
 
 

 
 
 

ASTERICS - H2020 - 653477 
 
 

 

  

Technology 

Benchmark Report 

D-INT  Work Package 

ASTERICS GA DELIVERABLE: D3.19 
Document identifier: ASTERICS-D3.19.doc 

Date: 1 May 2019 

Work package: WP3 OBELICS 

Lead partner: ASTRON 

Document status: Final 

Dissemination level: Public 

Document link: https://www.asterics2020.eu 

/documents/ASTERICS-D3.19.pdf  

Abstract 

An overview of the work carried out in the D-INT task in the OBELICS work package of the 
ASTERICS project in the last two years of its work. In particular, we focuses here on 
benchmarks of various technologies that have been created or tested for data systems 
integration. 

Ref. Ares(2019)3785585 - 13/06/2019



 

  

 
ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC 

1 COPYRIGHT NOTICE 

I. COPYRIGHT NOTICE 

Copyright © Members of the ASTERICS Collaboration, 2015. See www.asterics2020.eu for 
details of the ASTERICS project and the collaboration. ASTERICS (Astronomy ESFRI & Research 
Infrastructure Cluster) is a project funded by the European Commission as a Research and 
Innovation Actions (RIA) within the H2020 Framework Programme. ASTERICS began in May 
2015 and will run for 4 years.  
This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a 
letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, 
and USA. The work must be attributed by attaching the following reference to the copied 
elements: “Copyright © Members of the ASTERICS Collaboration, 2015. See 
www.asterics2020.eu for details of the ASTERICS project and the collaboration”. Using this 
document in a way and/or for purposes not foreseen in the license, requires the prior written 
permission of the copyright holders. The information contained in this document represents 
the views of the copyright holders as of the date such views are published.  

II. DELIVERY SLIP 

 Name Partner/WP Date 

From Tammo Jan Dijkema ASTRON/WP3 03 March 2019 

Author(s) Marcel Loose 
Tammo Jan Dijkema 
Thomas Vuillaume 
Bojan Nikolic 
Antonio Falabella 
Tarek Hassan 
Léa Jouvin 
Javier Rico 
Kay Graf 
David Carreto-Fidalgo 
José Luis Contreras 

ASTRON 
Astron 
LAPP 
Univ. Cambridge 
INFN 
IFAE 
IFAE 
IFAE 
FAU 
UCM 
UCM 

 

Reviewed by Rob van der Meer  26 May 2019 

Approved by AMST  28 May 2019 

 

http://www.asterics2020.eu/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.asterics2020.eu/


 

  

 
ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC 

2 DOCUMENT LOG 
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LSST The Large Synoptic Survey Telescope 

OBELICS Observatory E-environments LInked by common ChallengeS 

SKA The Square Kilometre Array 

A complete project glossary is provided at the following page: 
http://www.asterics2020.eu/glossary/ 

 

VI. PROJECT SUMMARY 

ASTERICS (Astronomy ESFRI & Research Infrastructure Cluster) aims to address the cross-
cutting synergies and common challenges shared by the various Astronomy ESFRI facilities 
(SKA, CTA, KM3Net & E-ELT). It brings together for the first time, the astronomy, astrophysics 
and particle astrophysics communities, in addition to other related research infrastructures. 
The major objectives of ASTERICS are to support and accelerate the implementation of the 
ESFRI telescopes, to enhance their performance beyond the current state-of-the-art, and to 
see them interoperate as an integrated, multi-wavelength and multi-messenger facility. An 
important focal point is the management, processing and scientific exploitation of the huge 
datasets the ESFRI facilities will generate. ASTERICS will seek solutions to these problems 
outside of the traditional channels by directly engaging and collaborating with industry and 
specialised SMEs. The various ESFRI pathfinders and precursors will present the perfect 
proving ground for new methodologies and prototype systems. In addition, ASTERICS will 
enable astronomers from across the member states to have broad access to the reduced data 
products of the ESFRI telescopes via a seamless interface to the Virtual Observatory 
framework. This will massively increase the scientific impact of the telescopes, and greatly 
encourage use (and re-use) of the data in new and novel ways, typically not foreseen in the 
original proposals. By demonstrating cross-facility synchronicity, and by harmonising various 
policy aspects, ASTERICS will realise a distributed and interoperable approach that ushers in a 
new multi-messenger era for astronomy. Through an active dissemination programme, 
including direct engagement with all relevant stakeholders, and via the development of citizen 
scientist mass participation experiments, ASTERICS has the ambition to be a flagship for the 
scientific, industrial and societal impact ESFRI projects can deliver. 

http://www.asterics2020.eu/glossary/
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VII. EXECUTIVE SUMMARY 

This document will focus on the work carried out in the D-INT task in the OBELICS work 
package of the ASTERICS project in the last two years of its work. In particular, it focuses on 
benchmarks of various technologies that have been created or tested for data systems 
integration. 

The integration of data systems plays part on various levels in processing of astronomical data. 
The first contribution on APERTIF is on integrating an entire system, including the Westerbork 
telescopes themselves. The data in this case is the metadata about the state of the system, 
and the commands to control it. Tying together all these systems is an art in itself, which is of 
course very much agnostic of what the astronomical data will be used for - say radio 
astronomy or gamma ray astronomy. This makes that the control software is a piece that could 
profit from further collaboration between the ASTERICS partners. 

Once data has been stored safely on disk, always further processing is needed to get the 
science out of it. These scientific pipelines very often require human feedback to tweak the 
pipeline while looking at the results. A modern technology that enables this is the Jupyter 
Notebook interface, enabling user interaction through a web interface, while the processes 
may run remotely on a supercomputer. GammaBoard builds on top of Jupyter notebooks to 
provide an easy interface for CTA data analysis, especially the GammaLearn project. 
Improvements to the underlying GammaPy have also been made, in particular to the data 
format. This enables a pipeline like the multi-instrument analysis of the Crab Nebula. 

While designing pipelines, typically various version of the pipeline are run on the same data. 
Within these pipelines, some of the steps of the pipeline will perform exactly the same 
computation as the previous version. If these computations are very expensive, it is useful to 
eliminate this re-computation. This is what Recipe and SWIFT/T CASA aim to do. To be sure 
which version of the pipeline ran on data, or more broader to guarantee the reproducibility 
of data, containerisation can be used to fix the environment (all software used in a pipeline) 
for a certain run of the pipeline. 

To improve the computation of expensive steps themselves, we can use GPUs to increase 
performance of the computer. For minimisation, a typical step in astronomical pipelines, 
PyTORCH enables use of the GPU with minimal change to existing code. This was 
benchmarked, and shows good results. Another performance boost can be to use a parallel 
filesystem on low-power architectures. A prototype of this has been built, showing that these 
optimizations do not exclude each other. 

The contributions in this report cover various parts in the data processing pipeline. Because 
most of the contributions focus on integrating systems, they are not domain specific. That 
means they can be used across the disciplines, stressing the synergy between radio astronomy 
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and particle physics. Collaboration on the contributions has happened over the Obelics 
progress meetings, where prototypes of the contributions of this report have been presented. 

The software presented in this report shows what can be achieved by using common 
standards, and using existing or emerging technologies.  
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1. APERTIF monitoring and control software (ASTRON) 

Introduction 

The APERTIF project has improved the Westerbork Synthesis Radio Telescope (WSRT) with 
new phased-array feeds that enable it to observe 40 nearby pointings simultaneously. The 
extra flexibility brought to the system by having many pointings per dish, brings in the need 
for improved monitoring and control software. 

The APERTIF system contains a lot of custom-made hardware that requires dedicated drivers. 
Due to its increased complexity, the new system requires a much more complex monitoring 
and control system (Figure 1), which needed to be built almost completely from scratch. 

In building the control software, we have tried to use many off-the-shelf solutions, and have 
focused on interoperability between these components. The use of messaging middleware to 
facilitate the communication between custom high-performance components and off-the-
shelf software will be essential for even larger projects like the SKA. 

Design considerations 

The software consists of a number of layers. The bottom layer contains the hardware drivers. 
All communication with the hardware is synchronous. The next layer contains the controllers, 
which are responsible for handling commands they receive and for serializing access to the 
drivers.  

All communication is done using messaging middleware, based on the AMQP standard. This 
improves reliability and robustness in the communication between the controllers and 
services running on the different nodes. Messages are routed based on subject (Figure 2). 

Every controller or service has a number of interfaces and must be able to handle a number 
of message types. The service interface provides synchronous RPC-like communication, and 
the functional- and management interfaces provide asynchronous command-response 
communication. Events and notifications will be sent to any service that subscribes to these 
messages. 

The system is implemented with off-the-shelf technologies where possible. The main 
programming language is Python. C++ is used where performance is critical. 

The software is GPL licensed and can be downloaded from our Subversion server: 
https://svn.astron.nl/apertif/software. 

https://svn.astron.nl/apertif/software
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Figure 1. Overview of the APERTIF monitoring and control setup 

 

Figure 2. Overview of a component in the APERTIF setup, with messaging interfaces. 

References 

1. ASTRON-RP-1439 APERTIF Software Architecture v2.5 
2. ASTRON-RP-1441 APERTIF Global Design System Services and MAC v1.3 
3. ASTRON-SP-077 APERTIF Software Architectural Rules v0.4 
4. ASTRON-RP-1510 APERTIF Controller Framework v1.3 
5. ASTRON-RP-1517 APERTIF High-Level Design UniBoard Driver v1.0 



 

  

 
ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC 

10 Gammaboard (LAPP/CNRS) 

2. Gammaboard (LAPP/CNRS) 

Introduction 

GammaBoard is a dashboard based on Jupyter notebooks technology, developed to display 
specific metrics assessing the reconstructions performances of Imaging Atmospheric 
Cherenkov Telescopes (IACTs). 

Deep learning research is very experimental and is a lot about trials and errors, and 
bookkeeping of the different experiments realised. GammaBoard eases the bookkeeping and 
allows quick comparison of the reconstruction performances of your machine learning 
experiments. 

It is a working prototype used in CTA, especially for the GammaLearn project. 

GammaBoard, written by Thomas Vuillaume, Mikael Jacquemont, is composed of: 

● Plots (metrics) such as angular resolution and energy resolution. 
● The list of experiments in the user folder. 

When an experiment is selected in the list, the data is automatically loaded, the metrics 
computed and displayed. A list of information provided during the training phase is also 
displayed. 

Since GammaBoard is built on top of Jupyter, it is possible to interactively further explore the 

data with the command interface (Figure 3). 

As many experiment results as needed can be overlaid. 

https://gitlab.lapp.in2p3.fr/GammaLearn/
https://gitlab.lapp.in2p3.fr/GammaLearn/
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Figure 3.  Illustration of GammaBoard. The plots on top show aggregated results of the data. The command-interface makes 
it possible to interactively explore the data, while the bottom half shows detailed statistics. 

  

Command interface 
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3. Contribution to common DL3 format and 

Gammapy (IFAE and UCM) 

Introduction 

The data level 3 (DL3, [1]) format is an open high-level data format currently developed for 

the Cherenkov Telescope Array (CTA, [2]) observatory. The data files are stored using the FITS 

file format and are made up of a binary table containing all event-wise parameters required 

by the scientific analysis of the data (e.g. event energy, time of arrival, instrument response, 

etc.). A full description of the format can be found in https://github.com/open-gamma-ray-

astro/gamma-astro-data-formats [3]. 

Gammapy [3] is an open-source python package for gamma-ray astronomy built on Numpy 

and Astropy. It is able to analyze the DL3 data format to create sky images, spectra and 

lightcurves of gamma-ray sources. It is currently used for the simulation and analysis of 

observations of the Cherenkov Telescope Array (CTA) and has been proposed as a prototype 

for the CTA science tools. Apart from its usage for CTA, it has also proven to be able to analyze 

real data from current gamma-ray astronomy instruments and combine data from different 

observatories by means of the DL3 data format [4].  

Improving the Gammapy package 

Our contributions to Gammapy led to new features in the analysis of DL3 data. We focused on 

the handling of the observation data in the early stages of an analysis when the user selects 

the relevant events from event lists stored on disk. An analysis with Gammapy is usually 

carried out in a Jupyter Notebook, and hence the selection process should maintain the 

dynamical nature of the notebook. 

The Observation class is the main container class in Gammapy holding all the information 

necessary for an analysis, which is the event list, observation time and instrument response. 

Gammapy applies a lazy loading scheme via the DataStore class, in which the data is only 

loaded into memory when needed for computation and only in small chunks, that is one 

Observation object at a time, which usually corresponds to about 20-30 minutes of 

observation time. This enables the analysis of huge amounts of data without running into 

memory shortage issues. To allow for a continuous event selection in time or phase, we 

implemented observation filters that are applied on-the-fly when loading the events and GTIs 

into memory. For this, an instance of an ObservationFilter class is attached to an Observation 

object, which is automatically applied when the relevant data is accessed (see Figure 4 and 

Figure 5). This approach is fully compatible with the lazy loading scheme of Gammapy and 

permits a fast and dynamical selection process throughout an analysis, since the filters can be 

https://github.com/open-gamma-ray-astro/gamma-astro-data-formats
https://github.com/open-gamma-ray-astro/gamma-astro-data-formats
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updated at any stage (before carrying out computations on the events). We also added 

convenient methods to the Observation and Observations class (the latter being a collection 

of Observation objects) that allow a direct and user-friendly update of the observation filters. 

The implementation of the observation filters was guided by a PIG (Proposal for Improvement 

of Gammapy) and was part of a new observation handling scheme in Gammapy (the open pull 

request is found here: https://github.com/gammapy/gammapy/pull/1877). 

 

 

 
Figure 4. Sketch of the new class diagram (UML) in 
the Gammapy package, zoomed-in to the 
observation handling 

 
Figure 5.  Result of a simple event selection by time with the new 
observation filters. 

The development of a 3D or cube analysis to simultaneously fit a spectral and morphological 
model to the data is a challenge in Cherenkov gamma-ray astronomy. The strong variation of 
the instrument response functions and of the residual cosmic rays background with the 
observation conditions makes it very difficult to build a coherent background model across 
the whole energy range. Nevertheless, with improving sensitivities and angular resolution of 
current Cherenkov telescopes and next generation instruments such as the Cherenkov 
Telescope Array, the complex morphology of the regions with diffuse emission or multiple 
sources requires the development of this technique. We are also involved in the development 
of this analysis in Gammapy. The conversion of current Cherenkov telescope data as we do in 
MAGIC (report in D3.18) is also a major step in order to test this new kind of analysis on data 
we already know. 

https://github.com/gammapy/gammapy/pull/1877
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4. Towards open and reproducible multi-intrument 

analysis in gamma-ray astronomy (IFAE) 

We contributed to the first joint likelihood analysis of the Crab Nebulae (Figure 6). For this, we 
used the data from H.E.S.S., MAGIC, VERITAS, FACT and Fermi. Our analysis focuses on the 
MAGIC side (with the previous DL3 converter for MAGIC data reported in D3.18) and the 
VERITAS side. The likelihood fit and the combination of the data was obtained using the 
software Gammapy presented above. The results presented in this work are obtained using 
open-access online assets that allow for a long-term reproducibility of the results. This work 
is a major achievement in order to promote the use of open-source tools and data in gamma-
ray astronomy. Having all the current Cherenkov data in the DL3 format for data archival will 
allow us to perform this kind of analysis for multiple sources including CTA data and later on 
using the 3D analysis that requires a certain type of instrument response function that are not 
yet available for MAGIC or VERITAS. 

 

Figure 6. The  first joint likelihood analysis of the Crab Nebulae using the data from H.E.S.S., MAGIC, VERITAS, FACT and 
Fermi. 
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5. Recipe (University of Cambridge) 

Introduction 

Recipe implements a technique to automatically minimise the re-computation when a data 
analysis program is iteratively changed, or added to, as is often the case in exploratory data 
analysis in astronomy. A typical example is flagging and calibration of demanding or unusual 
observations where visual inspection suggests improvement to the processing strategy. The 
technique is based on memorization and referentially transparent tasks. We describe the 
implementation of this technique for the CASA radio astronomy data reduction package. We 
also propose a technique for optimising efficiency of storage of memorized intermediate data 
products using copy-on-write and block level de-duplication and measure their practical 
efficiency. We find the minimal re-computation technique improves the efficiency of data 
analysis while reducing the possibility for user error and improving the reproducibility of the 
final result. It also aids exploratory data analysis on batch-schedule cluster computer systems. 

Benchmark, comparison with existing technologies 

Recipe is in production use in several institutions and is especially useful to students 
experimenting with data reduction pipelines. 

There is virtually no speed hit for including recipe in your code on a first run but when re-
running an old code the speedup is approaching 100%. 

It is important to note that to really offer the improvements in performance a modern Copy-
on-Write file system should be used. 

References 

Minimal Re-computation for Exploratory Data Analysis in Astronomy, Nikolic, Small and 
Kettenis, proceedings of ADASS 2017, arXiv:1711.06124  

Minimal Re-computation for Exploratory Data Analysis in Astronomy, Nikolic, Small and 
Kettenis, Astronomy and Computing 2018A&C….25..133N, arXiv:1809.01945  
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6. SWIFT/T CASA (University of Cambridge) 

Introduction 

Accelerating the time-to-solution for analysis of radio interferometry data is desirable for a 

number of reasons, e.g.: 

● More efficient use of scientist/analyst time when the analysis is not fully automated 

● More efficient use of valuable computing resources, e.g., very fast storage 

● More timely response to time-critical phenomena, whether they are of astronomical 

origin (i.e., transient sources) or in the telescope (e.g., a fault developing which is 

subtly corrupting the data) 

The speed of interferometric data processing can be limited by a variety of computing 

resources, including at least: 

● Storage input/output throughput 

● Working memories capacities, latencies and throughputs 

● CPU instruction throughput and latencies 

The balance of how these factors determine the speed of processing depends on the 

configuration of the telescope, type of observation and processing required. The balance is 

predictable in principle, but not easily so, and this balance has very substantially changed in 

the past with the evolution of computer hardware architectures. 

For this reason, the way to accelerate the time-to-solution for a general-purpose radio 

astronomy problem is not obvious. My subjective experience is that improvements with 

respect to a particular use case tend to have mixed, but on average a positive, success in 

general. 

In this memo, I investigate distributing CASA (Common Astronomy Software Applications, the 

tool set regularly used in radio astronomy) processing by combining it with the SWIFT/T 

system described by Wozniak et al. (2013), with the ultimate objective accelerating time to 

solution. 

SWIFT/T consists of a programming language (SWIFT) and a dataflow engine (Turbine). The 

word dataflow is used here in the technical sense of Johnston et al. (2004). The most relevant 

feature of the SWIFT language is the use of strictly single assignment data structures (an idea 
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originating, I believe, in the I-Structures of the Id programming language, see Arvind et al. 

1989 ) which makes it easy for SWIFT to infer the dataflow semantics of the program. 

Benchmark, comparison with existing technologies 

Simple initial tests of scalability were performed using a simple example application. Only 23 

input datasets were used, limiting available parallelism. Scalability was investigated by varying 

the number of SWIFT/T workers on both a single node and a cluster 

On the single node tests, the program /usr/bin/time was used to record the wall clock time. 

Other parameters, including the total number of pages read and written to disk were recorded 

as well. On the Darwin cluster the total MPI execution time reported by the Turbine PBS script 

was used as the wall-clock run time. The results of simple initial scalability tests are shown in 

Figure 7. 

 
Figure 7. Result of single node tests, where in each test the number of workers is doubled. 

In the single node tests, the /usr/bin/time program reported total file system input was about 

33 GigaBytes (GB) read and 15GB written. For the fastest execution this corresponds to an 

average read rate of 460 MB/s and simultaneous average write rate of 200 MB/s. Although 

the P3700 is capable in ideal conditions of even higher read speeds (up to 2,800 MB/s is 

claimed in the sales brochure), these very high achieved I/O figures suggest that the plateau 

in scalability at around 8 workers is due to throughput limitations of the I/O subsystem. 

Run times on the Darwin cluster were, in most cases, substantially longer than on the single 

node. Running CASA interactively showed similar performance. I have not determined the 

reason for this; it seems the most likely factor is the performance of the file systems used for 

the type of I/O access that CASA does. 
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7. Containerisation for Data and Software 

Preservation (FAU) 

Introduction 

Scientific research bases on interoperability and reproducibility of results. Methods, 
procedures, software and data have to be preserved in a way that they remain re-usable over 
and beyond the full lifespan of research infrastructures (RIs). This includes the ability to run 
analyses and data processing steps in the quickly evolving software environments, and on the 
heterogeneous computing systems and architectures found in the RIs. FAU as partner of the 
KM3NeT collaboration has helped to define and develope workflows based on state of the art 
containerisation tools and techniques to achieve these goals while minimising the 
compatibility requirements. 

The web-based open source Git-repository manager GitLab provides all the ingredients for 
future-proof software development including essential features like version management, 
issue tracking, discussion platforms, and continuous integration and deployment. The latter is 
based on Docker, which performs operating-system-level virtualisation (containerization). 
Each software and analysis project is developed, compiled, and tested in an isolated and 
independent container and later also deployed to a target production system as a single 
bundled image including all requirements. 

These so called Docker images serve as a starting point for Singularity images, which is another 
containerisation solution specifically designed to run on HPC clusters and thus is well suited 
for fully reproducible data processing or analysis chains running on large and sometimes 
heterogeneous computer clusters and grids. Singularity images have proven to be a 
convenient solution with minimal setup, maintenance and compatibility requirements. Docker 
and singularity registries are used to deploy the containers to the data processing sites and in 
the end, only the necessary data is added to the containers to have a fully preservable 
data/software bundle that is stored in the long-term storage systems of the collaboration. 

Benchmark, comparison with existing technologies 

Two dedicated server instances were set up, one for the GitLab software development and 
one for continuous integration and deployment based on containers and the container 
registries. 

The system was tested and benchmarked to proof that it can handle the development tasks 
of the KM3NeT collaboration. Also, employing the containers for data processing and analysis 
on PCs, servers and HPC clusters has been benchmarked and no significant drop of 
performance has been found. 

https://about.gitlab.com/
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There have been different approaches on data and software preservation, e.g. self-describing 
formats for the data, or packaging of software using the software packages repositories of 
large Linux distributions. While continuous integration and continuous deployment are no 
innovative solutions in themselves, the extension to data and software provenance in an 
integrated end-to-end software development and deployment system to be used at each step 
of the full data processing pipeline, and at the same time producing long-term preservation 
for those tasks, is – to our knowledge – something new in the community. 

References 

Tamás Gál, “Data and Software Preservation through Containerisation in KM3NeT”, The New 
Era of Multi-Messenger Astrophysics, Groningen, 2019 
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8. PyTORCH Acceleration of function minimisation in 

astronomy (University of Cambridge) 

Introduction 

Minimisation (or, equivalently, maximisation) of non-linear functions is a widespread tool in 
science, engineering and information technology. Common examples of its use are maximum 
likelihood and maximum a-posteriori estimates of model parameters given a set of 
measurements; and, optimisation of system designs by minimising a cost function. 

Training of neural networks can also be expressed as a minimisation problem. Although the 
algorithms used for this minimisation are sometimes specific (to take into account that only a 
part of the available training set is considered at a time). Rapid adoption of neural networks 
in information technology systems has led to significant investment into software to support 
their training, including PyTorch. The new software packages developed in this area 
emphasise both efficiency and ease of use. 

Benchmark, comparison with existing technologies 

Relative performance of the NumPy and PyTorch variants were measured on a dedicated Dell 
PowerEdge server with dual socket Intel Xeon E5-2630 CPUs and dual NVIDIA Tesla K20c GPUs. 

Measurement was made as function of: 

1. Number of model parameters, represented by the maximum order of Zernike 
polynomials used, n. The actual number of polynomials up to order n is n(n+3)/2+1, so 
for example if Zernike polynomials of the order n = 8 are used, there are 45 parameters 
to be optimised. 

2. Computational cost of the model calculation, represented by the number of pixels N 
in each dimension of the grid. 

Simulated measurements (including simulated noise) were used as an input into the phase 
retrieval and it was found that the different implementations converged to the same result up 
to the tolerances specified to the BFGS algorithm1. 

Measured time-to-solution as a function of grid size is shown in Figure 8.  

                                                       
1 Broyden-Fletcher-Goldfard-Shanno, see Fletcher, Roger (1987), Practical Methods of Optimization (2nd ed.), 
New York: John Wiley & Sons, ISBN 978-0-471-91547-8 
 

https://en.wikipedia.org/wiki/John_Wiley_%26_Sons
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-91547-8
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Figure 8. Performance of NumPy, PyTorch with and without CUDA offload to the GPU. 

It can be seen that the PyTorch implementation is far faster in all configurations, and that the 
GPU-offloaded execution is faster than the CPU-only execution above grid size N ≥ 64 (note 
that the grid size is typically a power of two). For intermediate and large grids (N > 256) the 
PyTorch implementation running on CPUs is approximately an order of magnitude faster than 
the NumPy implementation, while the GPU offloaded execution is an order of magnitude 
faster still. Measured time-to-solution as a function of the number of model parameters is 
shown in Figure 9.  

 
Figure 9. Wallclock time to solution as a function of the number of free parameters. 

The large improvement in speed by PyTorch is seen to be apparently independent of the 
model parameters, at least in this case. 
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9. Benchmark of parallel distributed file systems on 

low-power architectures (INFN) 

Introduction 

We aimed at benchmarking the BeeGFS parallel cluster filesystem on low power SoCs such as 
ARM but also x86. We chose BeeGFS because it is open source, actively developed and also 
because it is easy to deploy. The SoC architectures lend themselves very well for IO-bound 
application, and allow to limit the costs in terms of hardware and energy consumption. 

Benchmark, comparison with existing technologies 

We tested BeeGFS on a small but complete setup (four machines and 8TB of disk space), with 
filesystem operation such as concurrent copy, and data transfers and also with parallel 
application such as mpi. Our test proved such setup is easy to obtain and it can be extended 
without particular concerns. Our test bench showed that a low power storage solution is 
possible without evident I/O limitations. 

 

  



 

  

 
ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC 

24 Conclusion 

10. Conclusion 

Several systems have been developed and then tested or benchmarked versus other existing 
systems to show optimal behaviour in required circumstances. Even when developing with 
the best intentions, one should not assume new ideas immediately lead to better 
performance. This should be tested and demonstrated. 

The presented results show that good progress has been made over the last two years of the 
ASTERICS project. 

11. Next steps 

All these results and underlying software (and hardware) developments are part of (soon to 
be) running systems that will be further developed for years to come, as long as scientist will 
analyse the data form the astronomy and astroparticle physics RIs. Many of the developments 
are well documented in Git systems and it is the interest of the scientists to keep the new and 
older versions accessible. 

 


