

ASTERICS - H2020 - 653477

Technology

Benchmark Report

D-INT Work Package

ASTERICS GA DELIVERABLE: D3.19
Document identifier: ASTERICS-D3.19.doc

Date: 1 May 2019

Work package: WP3 OBELICS

Lead partner: ASTRON

Document status: Final

Dissemination level: Public

Document link: https://www.asterics2020.eu

/documents/ASTERICS-D3.19.pdf

Abstract

An overview of the work carried out in the D-INT task in the OBELICS work package of the
ASTERICS project in the last two years of its work. In particular, we focuses here on
benchmarks of various technologies that have been created or tested for data systems
integration.

Ref. Ares(2019)3785585 - 13/06/2019

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

1 COPYRIGHT NOTICE

I. COPYRIGHT NOTICE

Copyright © Members of the ASTERICS Collaboration, 2015. See www.asterics2020.eu for
details of the ASTERICS project and the collaboration. ASTERICS (Astronomy ESFRI & Research
Infrastructure Cluster) is a project funded by the European Commission as a Research and
Innovation Actions (RIA) within the H2020 Framework Programme. ASTERICS began in May
2015 and will run for 4 years.
This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
and USA. The work must be attributed by attaching the following reference to the copied
elements: “Copyright © Members of the ASTERICS Collaboration, 2015. See
www.asterics2020.eu for details of the ASTERICS project and the collaboration”. Using this
document in a way and/or for purposes not foreseen in the license, requires the prior written
permission of the copyright holders. The information contained in this document represents
the views of the copyright holders as of the date such views are published.

II. DELIVERY SLIP

 Name Partner/WP Date

From Tammo Jan Dijkema ASTRON/WP3 03 March 2019

Author(s) Marcel Loose
Tammo Jan Dijkema
Thomas Vuillaume
Bojan Nikolic
Antonio Falabella
Tarek Hassan
Léa Jouvin
Javier Rico
Kay Graf
David Carreto-Fidalgo
José Luis Contreras

ASTRON
Astron
LAPP
Univ. Cambridge
INFN
IFAE
IFAE
IFAE
FAU
UCM
UCM

Reviewed by Rob van der Meer 26 May 2019

Approved by AMST 28 May 2019

http://www.asterics2020.eu/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.asterics2020.eu/

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

2 DOCUMENT LOG

III. DOCUMENT LOG

Issue Date Comment Author/Partner

1 01-03-2019 First draft T.J. Dijkema
(ASTRON)

2 30-04-2019 Contributions integrated T.J. Dijkema / Rob
v.d. Meer (ASTRON)

3 21-05-2019 Corrections and Introduction T.J. Dijkema
(ASTRON)

IV. APPLICATON AREA

This document is a formal deliverable for the GA of the project, applicable to all members of
the ASTERICS project, beneficiaries and third parties, as well as its collaborating projects.

V. TERMINOLOGY

ASTERICS Astronomy ESFRI & Research Infrastructure Cluster

CTA Cherenkov Telescope Array

E-ELT European Extremely Large Telescope

ESFRI European Strategy Forum on Research Infrastructures

KM3NeT Cubic Kilometre Neutrino Telescope

LOFAR The Low Frequency Array

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

3 PROJECT SUMMARY

LSST The Large Synoptic Survey Telescope

OBELICS Observatory E-environments LInked by common ChallengeS

SKA The Square Kilometre Array

A complete project glossary is provided at the following page:
http://www.asterics2020.eu/glossary/

VI. PROJECT SUMMARY

ASTERICS (Astronomy ESFRI & Research Infrastructure Cluster) aims to address the cross-
cutting synergies and common challenges shared by the various Astronomy ESFRI facilities
(SKA, CTA, KM3Net & E-ELT). It brings together for the first time, the astronomy, astrophysics
and particle astrophysics communities, in addition to other related research infrastructures.
The major objectives of ASTERICS are to support and accelerate the implementation of the
ESFRI telescopes, to enhance their performance beyond the current state-of-the-art, and to
see them interoperate as an integrated, multi-wavelength and multi-messenger facility. An
important focal point is the management, processing and scientific exploitation of the huge
datasets the ESFRI facilities will generate. ASTERICS will seek solutions to these problems
outside of the traditional channels by directly engaging and collaborating with industry and
specialised SMEs. The various ESFRI pathfinders and precursors will present the perfect
proving ground for new methodologies and prototype systems. In addition, ASTERICS will
enable astronomers from across the member states to have broad access to the reduced data
products of the ESFRI telescopes via a seamless interface to the Virtual Observatory
framework. This will massively increase the scientific impact of the telescopes, and greatly
encourage use (and re-use) of the data in new and novel ways, typically not foreseen in the
original proposals. By demonstrating cross-facility synchronicity, and by harmonising various
policy aspects, ASTERICS will realise a distributed and interoperable approach that ushers in a
new multi-messenger era for astronomy. Through an active dissemination programme,
including direct engagement with all relevant stakeholders, and via the development of citizen
scientist mass participation experiments, ASTERICS has the ambition to be a flagship for the
scientific, industrial and societal impact ESFRI projects can deliver.

http://www.asterics2020.eu/glossary/

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

4 EXECUTIVE SUMMARY

VII. EXECUTIVE SUMMARY

This document will focus on the work carried out in the D-INT task in the OBELICS work
package of the ASTERICS project in the last two years of its work. In particular, it focuses on
benchmarks of various technologies that have been created or tested for data systems
integration.

The integration of data systems plays part on various levels in processing of astronomical data.
The first contribution on APERTIF is on integrating an entire system, including the Westerbork
telescopes themselves. The data in this case is the metadata about the state of the system,
and the commands to control it. Tying together all these systems is an art in itself, which is of
course very much agnostic of what the astronomical data will be used for - say radio
astronomy or gamma ray astronomy. This makes that the control software is a piece that could
profit from further collaboration between the ASTERICS partners.

Once data has been stored safely on disk, always further processing is needed to get the
science out of it. These scientific pipelines very often require human feedback to tweak the
pipeline while looking at the results. A modern technology that enables this is the Jupyter
Notebook interface, enabling user interaction through a web interface, while the processes
may run remotely on a supercomputer. GammaBoard builds on top of Jupyter notebooks to
provide an easy interface for CTA data analysis, especially the GammaLearn project.
Improvements to the underlying GammaPy have also been made, in particular to the data
format. This enables a pipeline like the multi-instrument analysis of the Crab Nebula.

While designing pipelines, typically various version of the pipeline are run on the same data.
Within these pipelines, some of the steps of the pipeline will perform exactly the same
computation as the previous version. If these computations are very expensive, it is useful to
eliminate this re-computation. This is what Recipe and SWIFT/T CASA aim to do. To be sure
which version of the pipeline ran on data, or more broader to guarantee the reproducibility
of data, containerisation can be used to fix the environment (all software used in a pipeline)
for a certain run of the pipeline.

To improve the computation of expensive steps themselves, we can use GPUs to increase
performance of the computer. For minimisation, a typical step in astronomical pipelines,
PyTORCH enables use of the GPU with minimal change to existing code. This was
benchmarked, and shows good results. Another performance boost can be to use a parallel
filesystem on low-power architectures. A prototype of this has been built, showing that these
optimizations do not exclude each other.

The contributions in this report cover various parts in the data processing pipeline. Because
most of the contributions focus on integrating systems, they are not domain specific. That
means they can be used across the disciplines, stressing the synergy between radio astronomy

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

5 EXECUTIVE SUMMARY

and particle physics. Collaboration on the contributions has happened over the Obelics
progress meetings, where prototypes of the contributions of this report have been presented.

The software presented in this report shows what can be achieved by using common
standards, and using existing or emerging technologies.

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

6 Table of Contents

Table of Contents

I. COPYRIGHT NOTICE .. 1

II. DELIVERY SLIP ... 1

III. DOCUMENT LOG ... 2

IV. APPLICATON AREA .. 2

V. TERMINOLOGY .. 2

VI. PROJECT SUMMARY ... 3

VII. EXECUTIVE SUMMARY ... 4

Table of Contents .. 6

1. APERTIF monitoring and control software (ASTRON) .. 8

Introduction ... 8

Design considerations ... 8

2. Gammaboard (LAPP/CNRS) .. 10

Introduction ... 10

3. Contribution to common DL3 format and Gammapy (IFAE and UCM) .. 12

Introduction ... 12

Improving the Gammapy package ... 12

4. Towards open and reproducible multi-intrument analysis in gamma-ray astronomy (IFAE) 14

5. Recipe (University of Cambridge) ... 16

Introduction ... 16

Benchmark, comparison with existing technologies ... 16

6. SWIFT/T CASA (University of Cambridge) ... 17

Introduction ... 17

Benchmark, comparison with existing technologies ... 18

7. Containerisation for Data and Software Preservation (FAU) ... 19

Introduction ... 19

Benchmark, comparison with existing technologies ... 19

8. PyTORCH Acceleration of function minimisation in astronomy (University of Cambridge) 21

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

7 Table of Contents

Introduction ... 21

Benchmark, comparison with existing technologies ... 21

9. Benchmark of parallel distributed file systems on low-power architectures (INFN) 23

Introduction ... 23

Benchmark, comparison with existing technologies ... 23

10. Conclusion ... 24

11. Next steps .. 24

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

8 APERTIF monitoring and control software (ASTRON)

1. APERTIF monitoring and control software (ASTRON)

Introduction

The APERTIF project has improved the Westerbork Synthesis Radio Telescope (WSRT) with
new phased-array feeds that enable it to observe 40 nearby pointings simultaneously. The
extra flexibility brought to the system by having many pointings per dish, brings in the need
for improved monitoring and control software.

The APERTIF system contains a lot of custom-made hardware that requires dedicated drivers.
Due to its increased complexity, the new system requires a much more complex monitoring
and control system (Figure 1), which needed to be built almost completely from scratch.

In building the control software, we have tried to use many off-the-shelf solutions, and have
focused on interoperability between these components. The use of messaging middleware to
facilitate the communication between custom high-performance components and off-the-
shelf software will be essential for even larger projects like the SKA.

Design considerations

The software consists of a number of layers. The bottom layer contains the hardware drivers.
All communication with the hardware is synchronous. The next layer contains the controllers,
which are responsible for handling commands they receive and for serializing access to the
drivers.

All communication is done using messaging middleware, based on the AMQP standard. This
improves reliability and robustness in the communication between the controllers and
services running on the different nodes. Messages are routed based on subject (Figure 2).

Every controller or service has a number of interfaces and must be able to handle a number
of message types. The service interface provides synchronous RPC-like communication, and
the functional- and management interfaces provide asynchronous command-response
communication. Events and notifications will be sent to any service that subscribes to these
messages.

The system is implemented with off-the-shelf technologies where possible. The main
programming language is Python. C++ is used where performance is critical.

The software is GPL licensed and can be downloaded from our Subversion server:
https://svn.astron.nl/apertif/software.

https://svn.astron.nl/apertif/software

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

9 APERTIF monitoring and control software (ASTRON)

Figure 1. Overview of the APERTIF monitoring and control setup

Figure 2. Overview of a component in the APERTIF setup, with messaging interfaces.

References

1. ASTRON-RP-1439 APERTIF Software Architecture v2.5
2. ASTRON-RP-1441 APERTIF Global Design System Services and MAC v1.3
3. ASTRON-SP-077 APERTIF Software Architectural Rules v0.4
4. ASTRON-RP-1510 APERTIF Controller Framework v1.3
5. ASTRON-RP-1517 APERTIF High-Level Design UniBoard Driver v1.0

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

10 Gammaboard (LAPP/CNRS)

2. Gammaboard (LAPP/CNRS)

Introduction

GammaBoard is a dashboard based on Jupyter notebooks technology, developed to display
specific metrics assessing the reconstructions performances of Imaging Atmospheric
Cherenkov Telescopes (IACTs).

Deep learning research is very experimental and is a lot about trials and errors, and
bookkeeping of the different experiments realised. GammaBoard eases the bookkeeping and
allows quick comparison of the reconstruction performances of your machine learning
experiments.

It is a working prototype used in CTA, especially for the GammaLearn project.

GammaBoard, written by Thomas Vuillaume, Mikael Jacquemont, is composed of:

● Plots (metrics) such as angular resolution and energy resolution.
● The list of experiments in the user folder.

When an experiment is selected in the list, the data is automatically loaded, the metrics
computed and displayed. A list of information provided during the training phase is also
displayed.

Since GammaBoard is built on top of Jupyter, it is possible to interactively further explore the

data with the command interface (Figure 3).

As many experiment results as needed can be overlaid.

https://gitlab.lapp.in2p3.fr/GammaLearn/
https://gitlab.lapp.in2p3.fr/GammaLearn/

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

11

Figure 3. Illustration of GammaBoard. The plots on top show aggregated results of the data. The command-interface makes
it possible to interactively explore the data, while the bottom half shows detailed statistics.

Command interface

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

12 Contribution to common DL3 format and Gammapy (IFAE and UCM)

3. Contribution to common DL3 format and

Gammapy (IFAE and UCM)

Introduction

The data level 3 (DL3, [1]) format is an open high-level data format currently developed for

the Cherenkov Telescope Array (CTA, [2]) observatory. The data files are stored using the FITS

file format and are made up of a binary table containing all event-wise parameters required

by the scientific analysis of the data (e.g. event energy, time of arrival, instrument response,

etc.). A full description of the format can be found in https://github.com/open-gamma-ray-

astro/gamma-astro-data-formats [3].

Gammapy [3] is an open-source python package for gamma-ray astronomy built on Numpy

and Astropy. It is able to analyze the DL3 data format to create sky images, spectra and

lightcurves of gamma-ray sources. It is currently used for the simulation and analysis of

observations of the Cherenkov Telescope Array (CTA) and has been proposed as a prototype

for the CTA science tools. Apart from its usage for CTA, it has also proven to be able to analyze

real data from current gamma-ray astronomy instruments and combine data from different

observatories by means of the DL3 data format [4].

Improving the Gammapy package

Our contributions to Gammapy led to new features in the analysis of DL3 data. We focused on

the handling of the observation data in the early stages of an analysis when the user selects

the relevant events from event lists stored on disk. An analysis with Gammapy is usually

carried out in a Jupyter Notebook, and hence the selection process should maintain the

dynamical nature of the notebook.

The Observation class is the main container class in Gammapy holding all the information

necessary for an analysis, which is the event list, observation time and instrument response.

Gammapy applies a lazy loading scheme via the DataStore class, in which the data is only

loaded into memory when needed for computation and only in small chunks, that is one

Observation object at a time, which usually corresponds to about 20-30 minutes of

observation time. This enables the analysis of huge amounts of data without running into

memory shortage issues. To allow for a continuous event selection in time or phase, we

implemented observation filters that are applied on-the-fly when loading the events and GTIs

into memory. For this, an instance of an ObservationFilter class is attached to an Observation

object, which is automatically applied when the relevant data is accessed (see Figure 4 and

Figure 5). This approach is fully compatible with the lazy loading scheme of Gammapy and

permits a fast and dynamical selection process throughout an analysis, since the filters can be

https://github.com/open-gamma-ray-astro/gamma-astro-data-formats
https://github.com/open-gamma-ray-astro/gamma-astro-data-formats

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

13 Contribution to common DL3 format and Gammapy (IFAE and UCM)

updated at any stage (before carrying out computations on the events). We also added

convenient methods to the Observation and Observations class (the latter being a collection

of Observation objects) that allow a direct and user-friendly update of the observation filters.

The implementation of the observation filters was guided by a PIG (Proposal for Improvement

of Gammapy) and was part of a new observation handling scheme in Gammapy (the open pull

request is found here: https://github.com/gammapy/gammapy/pull/1877).

Figure 4. Sketch of the new class diagram (UML) in
the Gammapy package, zoomed-in to the
observation handling

Figure 5. Result of a simple event selection by time with the new
observation filters.

The development of a 3D or cube analysis to simultaneously fit a spectral and morphological
model to the data is a challenge in Cherenkov gamma-ray astronomy. The strong variation of
the instrument response functions and of the residual cosmic rays background with the
observation conditions makes it very difficult to build a coherent background model across
the whole energy range. Nevertheless, with improving sensitivities and angular resolution of
current Cherenkov telescopes and next generation instruments such as the Cherenkov
Telescope Array, the complex morphology of the regions with diffuse emission or multiple
sources requires the development of this technique. We are also involved in the development
of this analysis in Gammapy. The conversion of current Cherenkov telescope data as we do in
MAGIC (report in D3.18) is also a major step in order to test this new kind of analysis on data
we already know.

https://github.com/gammapy/gammapy/pull/1877

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

14 Towards open and reproducible multi-intrument analysis in gamma-ray astronomy (IFAE)

4. Towards open and reproducible multi-intrument

analysis in gamma-ray astronomy (IFAE)

We contributed to the first joint likelihood analysis of the Crab Nebulae (Figure 6). For this, we
used the data from H.E.S.S., MAGIC, VERITAS, FACT and Fermi. Our analysis focuses on the
MAGIC side (with the previous DL3 converter for MAGIC data reported in D3.18) and the
VERITAS side. The likelihood fit and the combination of the data was obtained using the
software Gammapy presented above. The results presented in this work are obtained using
open-access online assets that allow for a long-term reproducibility of the results. This work
is a major achievement in order to promote the use of open-source tools and data in gamma-
ray astronomy. Having all the current Cherenkov data in the DL3 format for data archival will
allow us to perform this kind of analysis for multiple sources including CTA data and later on
using the 3D analysis that requires a certain type of instrument response function that are not
yet available for MAGIC or VERITAS.

Figure 6. The first joint likelihood analysis of the Crab Nebulae using the data from H.E.S.S., MAGIC, VERITAS, FACT and
Fermi.

References

[1] Contreras, J. L. et al. 2015, in Proceedings, 34th International Cosmic Ray Conference
(ICRC): The Hague, The Netherlands, July 30 - August 6, 2015, Vol. 34, 960

[2] The Cherenkov Telescope Array Consortium, 2017, “Science with the Cherenkov
Telescope Array”, eprint arXiv:1709.07997

[3] Dell C. et al. https://github.com/open-gamma-ray-astro/gamma-astro-data-formats.

https://github.com/open-gamma-ray-astro/gamma-astro-data-formats

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

15

[4] Deil, C. et al. 2017, “Gammapy - A prototype for the CTA science tools”, in
Proceedings, 35th International Cosmic Ray Conference (ICRC): Busan, South Korea,
Vol. 34, 766

[5] Nigro, C. et al. 2019, “Towards open and reproducible multi-instrument analysis in
gamma-ray astronomy”, eprint arXiv:1903.06621

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

16 Recipe (University of Cambridge)

5. Recipe (University of Cambridge)

Introduction

Recipe implements a technique to automatically minimise the re-computation when a data
analysis program is iteratively changed, or added to, as is often the case in exploratory data
analysis in astronomy. A typical example is flagging and calibration of demanding or unusual
observations where visual inspection suggests improvement to the processing strategy. The
technique is based on memorization and referentially transparent tasks. We describe the
implementation of this technique for the CASA radio astronomy data reduction package. We
also propose a technique for optimising efficiency of storage of memorized intermediate data
products using copy-on-write and block level de-duplication and measure their practical
efficiency. We find the minimal re-computation technique improves the efficiency of data
analysis while reducing the possibility for user error and improving the reproducibility of the
final result. It also aids exploratory data analysis on batch-schedule cluster computer systems.

Benchmark, comparison with existing technologies

Recipe is in production use in several institutions and is especially useful to students
experimenting with data reduction pipelines.

There is virtually no speed hit for including recipe in your code on a first run but when re-
running an old code the speedup is approaching 100%.

It is important to note that to really offer the improvements in performance a modern Copy-
on-Write file system should be used.

References

Minimal Re-computation for Exploratory Data Analysis in Astronomy, Nikolic, Small and
Kettenis, proceedings of ADASS 2017, arXiv:1711.06124

Minimal Re-computation for Exploratory Data Analysis in Astronomy, Nikolic, Small and
Kettenis, Astronomy and Computing 2018A&C….25..133N, arXiv:1809.01945

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

17 SWIFT/T CASA (University of Cambridge)

6. SWIFT/T CASA (University of Cambridge)

Introduction

Accelerating the time-to-solution for analysis of radio interferometry data is desirable for a

number of reasons, e.g.:

● More efficient use of scientist/analyst time when the analysis is not fully automated

● More efficient use of valuable computing resources, e.g., very fast storage

● More timely response to time-critical phenomena, whether they are of astronomical

origin (i.e., transient sources) or in the telescope (e.g., a fault developing which is

subtly corrupting the data)

The speed of interferometric data processing can be limited by a variety of computing

resources, including at least:

● Storage input/output throughput

● Working memories capacities, latencies and throughputs

● CPU instruction throughput and latencies

The balance of how these factors determine the speed of processing depends on the

configuration of the telescope, type of observation and processing required. The balance is

predictable in principle, but not easily so, and this balance has very substantially changed in

the past with the evolution of computer hardware architectures.

For this reason, the way to accelerate the time-to-solution for a general-purpose radio

astronomy problem is not obvious. My subjective experience is that improvements with

respect to a particular use case tend to have mixed, but on average a positive, success in

general.

In this memo, I investigate distributing CASA (Common Astronomy Software Applications, the

tool set regularly used in radio astronomy) processing by combining it with the SWIFT/T

system described by Wozniak et al. (2013), with the ultimate objective accelerating time to

solution.

SWIFT/T consists of a programming language (SWIFT) and a dataflow engine (Turbine). The

word dataflow is used here in the technical sense of Johnston et al. (2004). The most relevant

feature of the SWIFT language is the use of strictly single assignment data structures (an idea

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

18 SWIFT/T CASA (University of Cambridge)

originating, I believe, in the I-Structures of the Id programming language, see Arvind et al.

1989) which makes it easy for SWIFT to infer the dataflow semantics of the program.

Benchmark, comparison with existing technologies

Simple initial tests of scalability were performed using a simple example application. Only 23

input datasets were used, limiting available parallelism. Scalability was investigated by varying

the number of SWIFT/T workers on both a single node and a cluster

On the single node tests, the program /usr/bin/time was used to record the wall clock time.

Other parameters, including the total number of pages read and written to disk were recorded

as well. On the Darwin cluster the total MPI execution time reported by the Turbine PBS script

was used as the wall-clock run time. The results of simple initial scalability tests are shown in

Figure 7.

Figure 7. Result of single node tests, where in each test the number of workers is doubled.

In the single node tests, the /usr/bin/time program reported total file system input was about

33 GigaBytes (GB) read and 15GB written. For the fastest execution this corresponds to an

average read rate of 460 MB/s and simultaneous average write rate of 200 MB/s. Although

the P3700 is capable in ideal conditions of even higher read speeds (up to 2,800 MB/s is

claimed in the sales brochure), these very high achieved I/O figures suggest that the plateau

in scalability at around 8 workers is due to throughput limitations of the I/O subsystem.

Run times on the Darwin cluster were, in most cases, substantially longer than on the single

node. Running CASA interactively showed similar performance. I have not determined the

reason for this; it seems the most likely factor is the performance of the file systems used for

the type of I/O access that CASA does.

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

19 Containerisation for Data and Software Preservation (FAU)

7. Containerisation for Data and Software

Preservation (FAU)

Introduction

Scientific research bases on interoperability and reproducibility of results. Methods,
procedures, software and data have to be preserved in a way that they remain re-usable over
and beyond the full lifespan of research infrastructures (RIs). This includes the ability to run
analyses and data processing steps in the quickly evolving software environments, and on the
heterogeneous computing systems and architectures found in the RIs. FAU as partner of the
KM3NeT collaboration has helped to define and develope workflows based on state of the art
containerisation tools and techniques to achieve these goals while minimising the
compatibility requirements.

The web-based open source Git-repository manager GitLab provides all the ingredients for
future-proof software development including essential features like version management,
issue tracking, discussion platforms, and continuous integration and deployment. The latter is
based on Docker, which performs operating-system-level virtualisation (containerization).
Each software and analysis project is developed, compiled, and tested in an isolated and
independent container and later also deployed to a target production system as a single
bundled image including all requirements.

These so called Docker images serve as a starting point for Singularity images, which is another
containerisation solution specifically designed to run on HPC clusters and thus is well suited
for fully reproducible data processing or analysis chains running on large and sometimes
heterogeneous computer clusters and grids. Singularity images have proven to be a
convenient solution with minimal setup, maintenance and compatibility requirements. Docker
and singularity registries are used to deploy the containers to the data processing sites and in
the end, only the necessary data is added to the containers to have a fully preservable
data/software bundle that is stored in the long-term storage systems of the collaboration.

Benchmark, comparison with existing technologies

Two dedicated server instances were set up, one for the GitLab software development and
one for continuous integration and deployment based on containers and the container
registries.

The system was tested and benchmarked to proof that it can handle the development tasks
of the KM3NeT collaboration. Also, employing the containers for data processing and analysis
on PCs, servers and HPC clusters has been benchmarked and no significant drop of
performance has been found.

https://about.gitlab.com/

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

20

There have been different approaches on data and software preservation, e.g. self-describing
formats for the data, or packaging of software using the software packages repositories of
large Linux distributions. While continuous integration and continuous deployment are no
innovative solutions in themselves, the extension to data and software provenance in an
integrated end-to-end software development and deployment system to be used at each step
of the full data processing pipeline, and at the same time producing long-term preservation
for those tasks, is – to our knowledge – something new in the community.

References

Tamás Gál, “Data and Software Preservation through Containerisation in KM3NeT”, The New
Era of Multi-Messenger Astrophysics, Groningen, 2019

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

21 PyTORCH Acceleration of function minimisation in astronomy (University of Cambridge)

8. PyTORCH Acceleration of function minimisation in

astronomy (University of Cambridge)

Introduction

Minimisation (or, equivalently, maximisation) of non-linear functions is a widespread tool in
science, engineering and information technology. Common examples of its use are maximum
likelihood and maximum a-posteriori estimates of model parameters given a set of
measurements; and, optimisation of system designs by minimising a cost function.

Training of neural networks can also be expressed as a minimisation problem. Although the
algorithms used for this minimisation are sometimes specific (to take into account that only a
part of the available training set is considered at a time). Rapid adoption of neural networks
in information technology systems has led to significant investment into software to support
their training, including PyTorch. The new software packages developed in this area
emphasise both efficiency and ease of use.

Benchmark, comparison with existing technologies

Relative performance of the NumPy and PyTorch variants were measured on a dedicated Dell
PowerEdge server with dual socket Intel Xeon E5-2630 CPUs and dual NVIDIA Tesla K20c GPUs.

Measurement was made as function of:

1. Number of model parameters, represented by the maximum order of Zernike
polynomials used, n. The actual number of polynomials up to order n is n(n+3)/2+1, so
for example if Zernike polynomials of the order n = 8 are used, there are 45 parameters
to be optimised.

2. Computational cost of the model calculation, represented by the number of pixels N
in each dimension of the grid.

Simulated measurements (including simulated noise) were used as an input into the phase
retrieval and it was found that the different implementations converged to the same result up
to the tolerances specified to the BFGS algorithm1.

Measured time-to-solution as a function of grid size is shown in Figure 8.

1 Broyden-Fletcher-Goldfard-Shanno, see Fletcher, Roger (1987), Practical Methods of Optimization (2nd ed.),
New York: John Wiley & Sons, ISBN 978-0-471-91547-8

https://en.wikipedia.org/wiki/John_Wiley_%26_Sons
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-91547-8

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

22 PyTORCH Acceleration of function minimisation in astronomy (University of Cambridge)

Figure 8. Performance of NumPy, PyTorch with and without CUDA offload to the GPU.

It can be seen that the PyTorch implementation is far faster in all configurations, and that the
GPU-offloaded execution is faster than the CPU-only execution above grid size N ≥ 64 (note
that the grid size is typically a power of two). For intermediate and large grids (N > 256) the
PyTorch implementation running on CPUs is approximately an order of magnitude faster than
the NumPy implementation, while the GPU offloaded execution is an order of magnitude
faster still. Measured time-to-solution as a function of the number of model parameters is
shown in Figure 9.

Figure 9. Wallclock time to solution as a function of the number of free parameters.

The large improvement in speed by PyTorch is seen to be apparently independent of the
model parameters, at least in this case.

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

23 Benchmark of parallel distributed file systems on low-power architectures (INFN)

9. Benchmark of parallel distributed file systems on

low-power architectures (INFN)

Introduction

We aimed at benchmarking the BeeGFS parallel cluster filesystem on low power SoCs such as
ARM but also x86. We chose BeeGFS because it is open source, actively developed and also
because it is easy to deploy. The SoC architectures lend themselves very well for IO-bound
application, and allow to limit the costs in terms of hardware and energy consumption.

Benchmark, comparison with existing technologies

We tested BeeGFS on a small but complete setup (four machines and 8TB of disk space), with
filesystem operation such as concurrent copy, and data transfers and also with parallel
application such as mpi. Our test proved such setup is easy to obtain and it can be extended
without particular concerns. Our test bench showed that a low power storage solution is
possible without evident I/O limitations.

ASTERICS - 653477 © Members of the ASTERICS collaboration PUBLIC

24 Conclusion

10. Conclusion

Several systems have been developed and then tested or benchmarked versus other existing
systems to show optimal behaviour in required circumstances. Even when developing with
the best intentions, one should not assume new ideas immediately lead to better
performance. This should be tested and demonstrated.

The presented results show that good progress has been made over the last two years of the
ASTERICS project.

11. Next steps

All these results and underlying software (and hardware) developments are part of (soon to
be) running systems that will be further developed for years to come, as long as scientist will
analyse the data form the astronomy and astroparticle physics RIs. Many of the developments
are well documented in Git systems and it is the interest of the scientists to keep the new and
older versions accessible.

