

Data archiving and data dissemination for the next generation of high-resolution solar telescopes

Nazaret Bello González

Kiepenheuer-Institut für Sonnenphysik, Freiburg (Germany)

Data archiving and data dissemination for the next generation of high-resolution solar telescopes

Nazaret Bello González

Kiepenheuer-Institut für Sonnenphysik, Freiburg (Germany)

Scientist at the Experimental Solar Physics group at KIS Head of the KIS Science Data Centre

Space-based (solar) telescopes provide with science-ready data to the scientific community

This translates into the use and re-use of data ⇒ high scientific output

(backed-up by a high number of publications)

This is still not the case for ground-based solar observatories.. for which the PI-mode is still in use

There is a need to make data discovery easy & to distribute data, especially, for ground-based observations

Next generation 4m-class ground-based solar telescopes

- Next generation ground-based solar observatories
 - (US) DKIST & (European) EST 4m-class telescopes

Fig. 1: The distribution of the observatories around the globe.

Daniel K. Inouye Solar Telescope DKIST

Haleakala Obs., Maui Rendering of proposed ATST facility at the primary Mees site on Haleakality, Maua, Hawaii by Tom Kekona, K. C. Environmental, Inc. Orginal set

DKIST

DKIST is a 4m solar telescope facility under construction by the (US) National Solar Observatory atop the Haleakala volcano in Maui

In operation on mid 2020, it will be the world's largest solar telescope

Haleakala

KIS (Germany) is contributing to the DKIST project with the *Visible Tunable Filter* (VTF) post-focus instrument, a 2D spectro-polarimeter

European contribution

DKIST is a 4m solar telescope facility under construction by the (US) National Solar Observatory atop the Haleakala volcano in Maui

In operation on mid 2020, it will be the world's largest solar telescope

♦ The upcoming ground-based large solar telescopes + new post-focus instrumentation (detectors) → vast increase of the data volume

Example: expected DKIST data stream

DKIST Instrument	Detectors	Hourly Data Volume
VBI	1 x 4096 x 4096 detector, 30 fps	6.5 TB/hour
ViSP	4 x 4096 x 4096 detector, 12.5/6.25 fps	2.1 TB/hour
VTF	3 x 4096 x 4096 detector, 10 fps	8.6; TB/hour
DL Cryc ~ 1 Adapted fror	60 x increased data vo	plume!

The experience with VTF/DKIST data handling will be essential to get ready for EST

European Solar Telescope

	I	nstitute					
IGAM	Institutsbereich Geo	ophysik, Astrophysik und Meteorologie					
нуо	Hvar Observatory						
AIASCR	Astronomical Institu						
THEMIS	THEMIS S.L.,[n						
KIS	Kiepenheuer-In	The European S					
UniDeb	Heliophysical C						
INAF	Istituto Naziona	telescope for h					
UU	Ultrecht Univers	be located in the					
ITA	Institute of The						
IA UWr	Astronomical In	The EST project					
AISAS	Astronomical In						
IAC	Instituto de Astr	lead by the IAC					
SU	The Institute for						
IBSOL	Istituto Bicerche	The (2) (ears) as					

UCL-MSSL University Colle

The *European Solar Telescope* (EST) is a 4m solar elescope for high-resolution solar observations to be located in the Canary Islands

Location

Graz

Hvar

Ondreiov

The EST project engages 15 European institutions ead by the IAC (Spain) and KIS (Germany)

The (3 years) conceptual design study conducted by research institutions and industrial companies was finalised in May 2011

It was co-financed by the European Commission under the EU's Seventh Framework Programme for Research (FP7)

Canaries, Spain

Spain **WEBSITE** http://www.est-east.eu/

Canary Islands

Nazaiel Dello Golizalez, NIO

	Institute		Location
IGAM	Institutsbereich Geophysik, Astrophysik und Meteorologie		Graz
нуо	Hvar Observatory		Hvar
AIASCR	Astronomical Institute AS CR		Ondrejov
THEMIS	THEMIS S.L., [note 1] INSU-CNRS, CNR		Paris
KIS	Kiepenheuer-Institut für Sonnenphysik		Freiburg
UniDeb	Heliophysical Observatory Debrecen		Debrecen
INAF	Istituto Nazionale di Astrofisica		Rome
UU	Ultrecht University, Sterrekundig Instituut		Utrecht
ITA	Institute of Theoretical Astrophysics		Oslo
IA UWr	Astronomical Institute of the Wroclaw University		Wroclaw
AISAS	Astronomical Institute of the Slovak, Academy of Sciencees	۲	Tatranská Lomnica
IAC	Instituto de Astrofísica de Canarias	8	La Laguna
SU	The Institute for Solar Physics		Stockholm
IRSOL	Istituto Ricerche Solari	÷	Locarno
UCL-MSSL	University College London - MSSL		London

Canaries, Spain

- TIMELINE ESFRI Roadmap entry: 2016 Preparation phase: 2011-2019 Construction phase: 2019-2025
- Operation start: 2026

ESTIMATED COSTS

- Capital value: Not Available
- Preparation: 10 M€
- Construction: 200 M€
 Operation: 9 M€/year

HEADQUARTERS

Instituto de Astrofísica de Canarias Canary Islands Spain

WEBSITE http://www.est-east.eu/

EST

Leibniz-Gemeinscha

		Institute		Location									
IGAM	Instituts	bereich Geophysik, Astrophysik und Meteorologie		Graz									
нио	Hvar O	bservatory		Hvar									
AIASCR	Astron												
THEMIS	THEMI												
KIS	Kiepen												
UniDeb	Heliopł	In March 2016, EST v	vas	s included	in the ESFRI								
INAF	Istituto	(Forum for a Europea	Forum for a European Strategy in Research										
UU	Ultrech												
ITA	Institute	infastructures) route i	na	ip, logelne									
IA UWr	Astron	projects (ACTRIS, DA	NU	JBIUS-RI,	E-RIHS,								
AISAS	Astron	EMPHASIS Y KM3Ne	Τ2	2.0) and tw	o others which are								
IAC	Institute	considered to be em	h	matic (CE	RN I HC Y ESRE ERS)								
SU	The Ins		010										
IRSOL	Istituto												
UCL-MSSL	Univer												
j.		The second se	TIMELIN • ESFRI R	NE Roadmap entry: 2016									

Canaries, Spain

HEADQUARTERS Instituto de Astrofísica de Canarias Canary Islands Spain

WEBSITE http://www.est-east.eu/

Nazarer Deno Gonzalez, NIS

The EST project is driving other projects..

SOLARNET Project

You are here: Home

CLOSE INFO

Presentation	Presentation				Age	enda	1.
News	SOLARNET brings together and integrates the major	European research infrastructures in the	« <	<	Ju	ne 20	D1
Consortium	field of high-resolution solar physics, in order to promo	ote their coordinated use and	M	T 31	W	T 2	
Networking Activities	development. This network involves all pertinent Euro	ppean research institutions,	6	7	8	9	
- Networking Activities	infrastructures, and data repositories. Together, these	represent first-class facilities. The	13	14	15	16	
Joint Research Activities	additional participation by private companies and non-	-European research institutions	20	21	22	23	
 Transnational Access and Service Programme (TAS) 	maximizes the impact on the world-wide scale. Networking activities, access to first-class infrastructu	res and joint research and development	27	28	29	30	
Application Forms	activities are being carried out in SOLARNET to impro	ove, in quantity and quality, the service		_ Co	ming	g Ev	e
= Public Deliverables	provided by this European community.			une 20 NS-6 V), 2016 Vorksh	3 10p: Tl	ne
Meetings & Workshops	In summary, SOLARNET involves.	G			spriere	2	
= Outreach	More than 500 solar physics researchers.		Ju Sl	une 26 PIE As	i, 2016 stronor	i mical 1	e
= Contact	32 partners from 16 countries: 24 EU research	DUNKNEI	In	strume	entátio	n	

relevance to contribute towards the realisation of the 4m European Solar Telescope (EST).

April 20, 2016. 4th SOLARNET Workshop "Solar Eruptive Events: Observations and

HIGHLIGHTS

Login Form

User Name

Password

Remember Me

> Log in

Forgot your password? Forgot your username?

New User?

Follow us

OLARNET Grant Agreement Nr. 312495

ect is supported by the European Commission's FP7 Capacitie Programme for the period April 2013 - March 2017 under the Grant

5

7

SOLARNET integrated the major research infrastructures in high-res solar physics

Funded by the FP7 since 2013

Feb. 3, 2016. SOLARNET Announcement of Opportunity. Mobility Programme of Young Researchers. DEADLINE: March 15th, 2016.

March 10, 2016. The EST in ESFRI Roadmap 2016.

April 13, 2016. 4th SOLARNET School Started Today in London.

institutions; 6 EU private companies; 2 USA research

SOLARNET Project achievements will be of paramount

Modelling" (London, April 20-23, 2016).

institutions.

Latest News

nent number 312495

SOLARNET Project

🖶 🖃

SOLARNET

You are here: Home > Joint Research Activities

Presentation	on
--------------	----

News

Consortium

Networking Activities

Joint Research Activities

- Transnational Access and Service Programme (TAS)
- Application Forms
- Public Deliverables
- Meetings & Workshops
- Outreach
- Contact

HIGHLIGHTS

Login Form

User Name

Joint Research Activities

The following joint research activities will be carried out to improve the service provided by owners/operators of research infrastructures for research on solar physics:

WP50. Tools for Innovative Data Handling: Pipelines, Databases & SVO

Develop data-reduction pipelines for the most important European ground-based high resolution solar instruments. Enhancement of observational procedures for increased productivity and easier coobserving and combination of data. The pipelines will produce data and meta-data fulfilling the requirements of a Solar Virtual Observatory (SVO). A SVO archive prototype will be implemented.

WP60. Advanced Instrumentation Development

Development of instrumentation to improve the existing solar telescopes and with possible application to the future large aperture solar telescopes. The instrumentation developments included in this WP are the following: large diameter FPIs (100 to 300mm), image slicer for 2D spectroscopy, microlens-fed spectrograph and Fast Imaging Polarimeter.

WP60.2 Image Slicers for 2D spectroscopy

SOLARNET Project

Targeted audiences outside

Challenges in data search & data discovery from solar observations

Traditionally, solar observation archives and VOs have been used primarily to locate data from data sets that researchers have already known existed, namely from space-based solar observatories

However, the number of data sets available has grown, and will continue to grow as an increasing amount of data flow from **ground-based** observations are made and will be available

The use of multi-instrument analysis of solar phenomena has grown over the last decade, but the ability of solar VOs to locate multi-instrument observations has not grown with it

An **ideal** Solar Virtual Observatory (SVO) should be able to find sets of successful observations matching a hypothetical ideal observation proposal:

joint observations of specific targets/events from multiple instruments

Such a scenario may even involve observations that do not overlap in time, e.g., solar disc observations of events vs. *in situ* observations of particles/ shocks/interactions at a later time

IBIS & ROSA data (J. Löhner-Bötcher, KIS)

- Limited FoV (non-full disc) Target dependent: quiet Sun, sunspots, pores, plages, faculae, prominences,...
- *Seeing* conditions, cadence variations, # dropped frames, polarimetric accuracy, etc. as quality/success parameters
- Versatile observing modes: non-standarised observing runs — novel science (multi wavelength,..) — difficulty in unifying data pipelines
- Upgrade of instrumentation changes in data characteristics for a given (upgraded) instrument

The ideal SVO should address:

- 1. Efficient presentation of search results
- 2. Visualisation: quick-look and movies, using external existing websites
- 3. Type of observations, targets and events must be identified
- 4. Instrument specific criteria: ideally, the archive should extract generic parameters matching specific criteria

In order to fulfil the "vision" of an ideal SVO, it is necessary to ensure that the ground-based data to be served contains the necessary metadata

http://sdc.uio.no/open/solarnet-20.3/WP20.3%20Deliverable%20D20.4_v1.2.pdf

This is our current challenge!

Ground-based solar data archive — An example: GREGOR data

Data archive for the GREGOR Infrared Spectrograph

2017

March:	28	29										
April:	02	03	04									
May:	05											
June:	12	13	14	16	17	18	19	20				
September:	01	02	03	07	08	09	11	12	13	22	28	29
October:	02	03	30	31								
November:	01											

2016

May:	09	13	14	15	18	19	20	21	22	23	26	27	29	30					
June:	02	04	05	06	07	80	09	10	11	12	13	14	15	16	19	20	21	22	28
July:	02	03	19	27															
August:	08	10	13	14	15	16	17	19	22	23	24	25	26	29	30				
September:	02	21	22	23	24	26	28	29											
November:	25	28																	

2015

April:1516171819212326272930May:010207080910111819212223242528293031June:010203--<t

2014

April:	26	27	28	29	30									
May:	01	02	03	05	07	08	09	10	11	12				
June:	17	18	19	20	21	22	23	24	25	26	27	28	29	
July:	01	02	03	05	08	09								
September:	02	03	04	05	08	10	11	13	17	18	20	22	23	IVI. Franz, KIS

Data archive for the GREGOR Infrared Spectrograph

2017

March:	28	29				
April:	02	03	04		Back to main page Go to archive folder	
May:	05				HMI context data: The arrow in the box indicates the 'slit direction', the arrow outside the box the scanning direction.	
June:	12	13	14	16	Blue (red) color of the box indicates that the GRIS scan is flipped in the scanning direction with respect to HMI (or not).	
September:	01	02	03	07	Please note that the coordinates ('x/y-pos') given in the GRIS preview images are those from the fits headers, so they are not necessarily correct.	
October:	02	03	30	31		
November:	01				08sep14.001	
				_	- TOT I TOT Q TOT U TOT V	
					and the second	
		4.0				08sep14.001
May:	09	13	14	15		1564 nm
June:	02	04	05	06		07:56:21-08:32:07 UT
July:	02	10	19	21		07.50.21-00.52.07 01
August:	08	10	13	14		30.0 ms / 20 accum.
September.	02	21	22	23		# of steps: 400
November.	20	20				x/y-pos: -205" / -444"
					HMI context data time: 2014-09-08T07:55:21 Beginning of scan: 2014:09:08T07:58:21	
April:	15	16	17	18		
Mav:	01	02	07	08		
June:	01	02	03			
August:	04	06	19			
September:	08	09	10	12	1	
				_	00egr4.001.* 1550	
April:	26	27	28	29		
May:	01	02	03	05	07 08 09 10 11 12	
June:	17	18	19	20	21 22 23 24 25 26 27 28 29	
July:	01	02	03	05	08 09 M Eronz KIS	SOLARN
September:	02	03	04	05	08 10 11 13 17 18 20 22 23 IVI. FIGHZ, IND	

http://solarnet.oma.be/

SOLARNET Virtual Observatory Prototype

SOLARNET

This web server is a prototype for the SOLARNET Virtual Observatory, and is hosted currently at the Royal Observatory of Belgium

For explanations on how to search and download the data, please see our detailed User Manual

Access data via a web application

The purpose of the web application is to give a very simple access to search and download solar data. For more complex search, you are invited to use the Python or IDL clients.

The web application presents the following features:

- Cross dataset search by date of observation, wavelength, tags and telescope
- Specific dataset search that is dependant on the dataset
- Search by solar events date and type
- Co-observation searches i.e. the date of observation overlap
 Quick-look with thumbnail (if available) and FITS header
- Data selection download by FTP and ZIP (if not too large)

N.B. : This is the version 2 of the application. The version 1 corresponding to the deliverable of March 2106 is not online anymore, but the code can be found at https://github.com/bmampaey/SDA/tree/1.1

Access data via IDL

To search and download solar data from IDL, you will need IDL version 8.0 or higher and to download the following library on your computer SOLARNET.pro

You can then compile it and use it as in the examples in the README

Access data via Python

To search and download data from python, install the SOLARNET python library. If you have pip install, it is as simple as doing

pip install solarnet

You can then import it and use it as in the examples in the Readme

Access data via RESTful API

All metadata and data locations are available through a RESTful API. The documentation is accessible at http://solarnet.oma.be/SDA/api/doc If you develop tools using the API, please let us know.

This project is supported by the European Commission's FP7 Capacities Programme for the period April 2013 – March 2017 under the Grant Agreement number 312495.

SOLARNET WP lead by the Royal Observatory of Belgium (Brussels)

The SOLARNET Solar Virtual Observatory

- In SOLARNET-1 a SVO prototype was developed.
- The goal of the SVO is to increase awareness of available datasets
- It's possible to search on <u>datasets</u>, <u>events</u> and then <u>cross search</u> your search results with other Datasets
- Some data is viewable as quick-look.
- URL: solarnet.oma.be

Datasets Data selections Even	ts					Login
Telescopes		Dataset	# Items	Instrument	Telescope	Characteristics
select or search telescopes		AIA level 1	501672	AIA	SDO	space based, full sun, E.U.V.
Characteristics select or search characteristics		ChroTel	70199	ChroTel	ChroTel	ground based, full sun, E.U.V.
īags		EIT level 0	36470	EIT	SOHO	space based, E.U.V.
select or search tags		GRIS level 1	1637	GRIS	GREGOR	spectograph, ground based
Dbservation date tart end		HMI magnetogram	50181	HMI	SDO	space based, full sun
Dbservation wavelength		IBIS	1396	IBIS	DST	ground based, spectropolarimetric data, partial sun
nin max		ROSA	12639	ROSA	DST	ground based
		SWAP level 1	1231849	SWAP	PROBA2	space based, full sun, E.U.V.
Search		Themis	15	Themis	Themis	test, ground based
		XRT	891952	XRT	Hinode	space based, full sun
			Clic	k on any row to s	see dataset cont	ent or refine search
	Sav	re selection				

The SOLARNET Solar Virtual Observatory

- At the core of the SVO is a database containing meta-data from all datasets.
- The meta-data can be searched with the web App and IDL and Python API
- Through the RESTful API other developers can interface with the meta-database.
- The data can be downloaded from the providers server.

SOLARNET WP lead by the Royal Observatory of Belgium (Brussels)

Visualisation tools — Another way of data discovery

JHelioviewer — Discovering data

jHelioviewer a quicklook viewer for Solar data

- Access to jpeg2000 quicklook data from different dataset.
- Several viewing options like running, base difference and multiview mode
- Several Image projection
- Time line synchronized with image time series
- Showing feature events from Heliophysics Events knowledge base (HEK)
- URL: www.jhelioviewer.org

11/20/17

Royal Observatory of Belgium (Brussels)

EST

JHelioviewer — Discovering data

Royal Observatory of Belgium (Brussels)

Summary

The ground-based solar physics community is

- Experimenting a change of paradigm on data handling, data archiving and data dissemination driven by the steady development of the observing capabilities and upcoming of large observing facilities (EST)
- 2. Aware of the need/the challenge on:
 - Standarising the observation procedure
 - Developing efficient data-pipelines
 - Storing the necessary metadata (time, WCS coordinates, event, wavelength..) to build a comprehensive database
- 3. Aware there is no need of 're-inventing the wheel' Joint efforts with
 - The space-based solar community on data catalogue
 - The astronomical community ASTERICS (OBELICS & DADI)

