

European Solar Telescope

A large solar telescope for the XXI century

> Ilaria Ermolli INAF Osservatorio Astronomico di Roma on behalf of the EST team

PI: Manuel Collados Vera, IAC, Spain

The EST is promoted

European Association for Solar Telescopes

EST: Strategic European Infrastructure since 03/2016

Eu-funded projects

2008-2011 Conceptual Design -- 3.2 M€

2013-2017 SOLARNET

For a better and wider usage of present EU facilities to get prepared for EST -- 6 M€

Continue with the technical development of EST instrumentation -- 3 M€

To provide the EST international consortium and the national agencies with a detailed plan for the implantation of EST -- 9 M€

Main science goals

Increasing the capabilities of ground-based solar telescopes will allow us to provide an answer to the following questions:

- How does the magnetic field evolve and emerge to the solar surface?
- How is the **energy transported** from the photosphere to the chromosphere?
- How is the energy released and deposited in the upper atmosphere?
- Why does the Sun have a hot chromosphere and a hot corona?
- What causes the **explosive events**, flares, filament eruptions, CMEs?

Telescope and instrumentation key requirements

- High precision polarimetric capabilities for accurate magnetic field determination
- Multiwavelength capabilities for simultaneous observation of different heights in the solar atmosphere
- Large photon collector

• High angular resolution

Conceptual design

4-m telescope to collect photons

On axis Gregory

Mirrors polarimetrically compensated for high accuracy spectropolarimetry

Adaptive Optics and Multi Conjugate Adaptive Optics system for the highest spatial resolution

MCAO integrated in the optical path

Simultaneous instrument stations (each with several wavelength channels)

Coudé instruments for larger stability

Instruments conceptual design

The light beam is divided into infrared and visible light

narrow band imager

800-1100 nm 500-1800 nm

grating spectrographs

700-1600 nm 1000-2300 nm

guest instrument

Instrumental developments

Boosting the new generation of detectors Large format, high precision, low noise

Development of a large Fabry-Pérot prototype for high mechanical stability and high parallelism of the etalons

New techniques for 2-D spectropolarimetry Multi-slit Integral field unit

Development of large format liquid crystal modulators

Control conceptual design

Observatory Control

Control system: Integrated control system for the entire observatory

- Common software
- Distributed, objectoriented architecture
- Data handling

DH conceptual design

Maximum Detector Flux:

4096 x 4096 pixels ; 100 frames /sec -> **3 GB /sec (visible)** 2048 x 2048 pixels ; 100 frames /sec -> **0.8 GB /sec (infrared)**

Instrument	# of Detectors	Data Rate
Broadband Filters	9 visible	28 GB / sec
Narrowband Filters	9 visible 6 infrared	28 GB / sec 5 GB / sec
Spectrographs	5 visible 3 infrared	16 GB / sec 3 GB / sec
	32 detectors	80 GB / sec

Narrow band spectropolarimetric imager

SST/CHROMIS observations: courtesy G. Scharmer

EST data

Microlens-fed spectrograph

SST/MIHi observations: courtesy M. Van Noort

Preparatory phase Technical works

Governance, Legal Entity, Financial plan, Site.

EST Community

- 1. A total of **615 researchers** have been identified in **22 European countries**.
- 2. UK, Germany and Italy represent close to 50% of the total solar community.
- 3. The first 9 countries concentrate more than 80% of the community.

Thanks!

