DADI contribution to IVOA TimeSeries priority

F.Bonnarel (CDS)

On behalf of DADI TimeSeries group

Summary of presentation

- DADI in IVOA Working groups
- Work so far
- Use cases
- Discovery
- Accessing
- Data representation

PEOPLE involved

 Ada Nebot, Mireille Louys, Jiri Nadvornik, Laurent Michel, Marco Molinaro, Dave Morris, Juan Manuel Alacid, Jesus Salgado, Sébastien Derrière, Thomas Boch, Gilles Landais, Baptiste Cecconi, François Bonnarel

DADI in IVOA Working Groups

- IVOA Work on TimeSeries. Working group chaired by DADI partners.
 - TDIG = Ada Nebot, Dave Morriss
 - DM = Mark Cresitello, Laurent Michel
 - DAL = François Bonnarel, Marco Molinaro
 - Planetary IG: Baptiste Cecconi
- Projects: GAVO + Prag, VizieR, Gaia, SVO, LSST
- Weakness of non european participation

Work so far?

- Was an IVOA priority. Actual work started around Trieste interop meeting fall 2016.
 - Note By Jiri Nadvornik (Prag + GAVO)+ prototypes
 - Teleconfs during 2016/2017 winter
 - ASTERICS DADI/CLEOPATRA meeting and Tech Forum in March 2017
 - First discussion on Jiri proposed serialization
 - · First overal discussion on TimeSeries Discovery metadata
 - TDIG/DAL/DM sessions in Shangai interop (May 2017)
 - Issues
 - Ideas for solutions
 - Participation of SVO and VizieR

Work so far?

- TDIG/DAL/DM sessions in Santiago Interop (October 2017)
 - Use cases and experience
 - DAL view
 - New model proposal
 - Serializations
- DADI meeting in Strasbourg (last week)
 - Progress on metadata
 - Progress on modelling
 - Progress on serializations attempts convergence

Use cases

- Gaia: multiband light curves in DR1
- SVO light curves
- VizieR: catalogs have time information; heterogeneous
 - Photometry, relative photometry, radial velocities, etc...
 - Catalog = TimeSeries for a single object
 - Catalogs merging several object TimeSeries
 - TimeSeries as associated data to the main catalog (links)

Use cases

- GASP (exoplanets)
 - Star features important for discovery and analysis
- XMM :
 - TimeSeries of spectra
 - TimeSeries of TimeSeries
- Planetary data (Euro Planet)
 - Planetary data have strong evolution aspects → time
 - EPNCore has more characterisation details on the Time axis than ObsCore

Metadata: for discovery and other purposes

- Time Frame (see STC, WCS):
 - Scale: TT, TDB, TAI...
 - Reference position : barycenter ...
 - Time Origin (if representation is « time offset »)
- Time Representation (see STC, WCS)
 - JD, MJD, ISO, or « Time offset »

Metadata: for discovery and other purposes

- Discovery Consensus so far:
 - Most of Obscore is fine
 - TARGET as alternative to ICRS position
 - Cadence and exposure time min max at sample level

Discussion

- How to describe what is varying with time?
 - (multi-valued) o_ucd ?
 - Dataproduct_subtype ? Mandatory ? Fixed list ?
- Periodicity and phase characterisation description ?
 - Let this to data representation? Data analysis?

TimeSeries discovery

- 3 discovery modes
 - Source driven (direct or via DataLink)
 - ObsCore/SIAV2-like driven (are extensions needed ?)
 - Physical Content driven (project specific?)

Source driven (Use case : GAIA)

- We retrieve sources via a TAP or an SCS service
- For each source an URL retrieves TimeSeries
- How do we put a standard tag on this URL?
 - Utype on a single FIELD?
 - LINK feature with new « content » attribute ?
 - Service descriptor (DataLink) towards a TimeSeries retriever ?
 - Links to TimeSeries in a {link resource} (DataLink) associated to the source ?

Obscore-like driven (use case :SVO, planets, GAIA, all)

- CoordSystem is ICRS, TT, BARYCENTER
- Obscore allows discovery of « data_product=TimeSeries » datasets with other constraints
- What should be added
 - See above (cadence, sample exposure time)
- Close to previous SSA-like approach (SVO)

Physical Content- driven (INAF exoplanets, ESA missions)

- List of metadata
 - Signal periodicity
 - Periods
 - Object type candidate (exoplanet, variable star, etc..)
 - Transiancy
 - Artefacts
 - Etc...
- Requires specific analysis
 - Project specific
 - Additional physical content metadata table.
 - Joints to Obscore-like table

DAL perspective

Consensus so far

- Keep « multi-d DAL framework » as a basis (ObsCore/TAP, SIA2, DataLink,SODA)
- TimeSeries Extensions (see above) for ObsCore, SIAV2, SODA
- TimeSeries DataModel and serialization is a spec

Points to discuss

- How to proceed for these extensions?
 - Generic and specific Extensions mechanisms as Light spec new versions or endorsed notes?
 - A « TimeSeries discovery and access » specification is created Must rely on all other specs

How DAL can tackle all this?

- Discovery : Obscore :
 - set a new TimeSeries extension table of the ivoa TAP schema.
 - More columns
 - Restriction/extensions on existing columns
- Access: Data Representation:
 - Requires modelling and serialization
 - ---> It's a DM task (see tommorrow)

How DAL can tackle all this?

- SODA: TimeSeries generation:
 - Add a « DataProductType attribute » to SODA (to generate TimeSeries instead of Cubes)
 - Add resampling parameter(s) to SODA interface
- SIAV2 :
 - Reflect new Obscore-like attributes in the SIAV2 query parameters
 - Virtual data discovery capability
 - « access reference » is no more a « retrieval » URL but a « SODA » URL

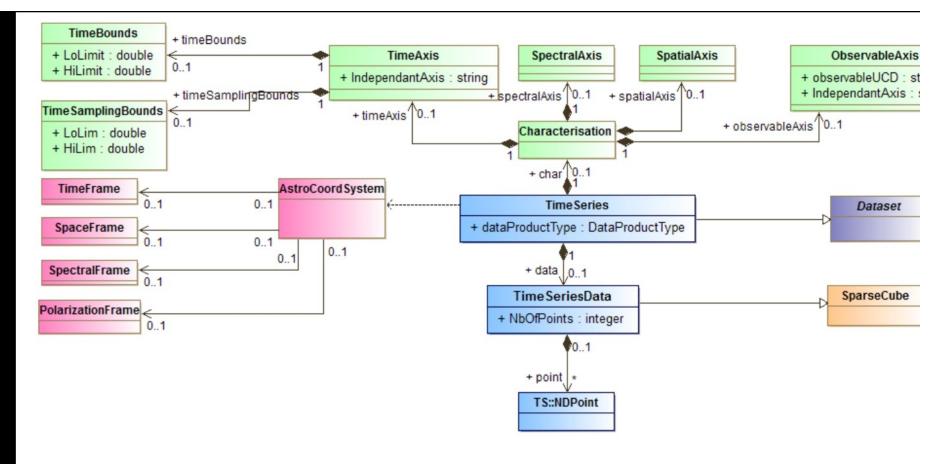
DAL perspective

Consensus so far

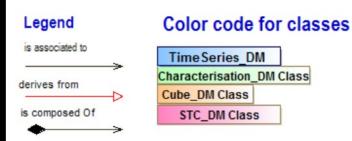
- Keep « multi-d DAL framework » as a basis (ObsCore/TAP, SIA2, DataLink,SODA)
- TimeSeries Extensions (see above) for ObsCore, SIAV2, SODA
- TimeSeries DataModel and serialization is a spec

Points to discuss

- How to proceed for these extensions?
 - Generic and specific Extensions mechanisms as Light spec new versions or endorsed notes?
 - A « TimeSeries discovery and access » specification is created Must rely on all other specs

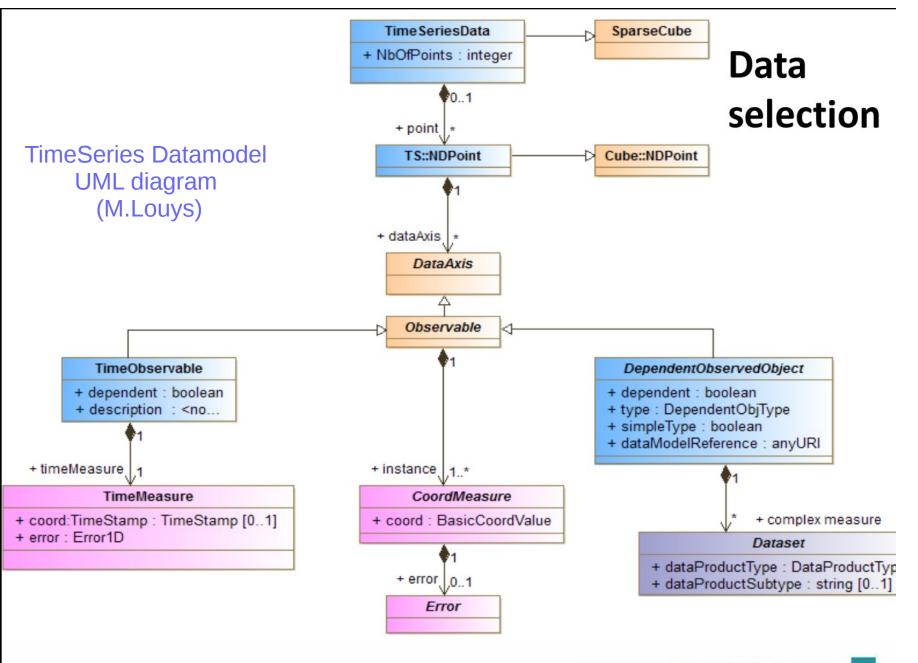


Data Model

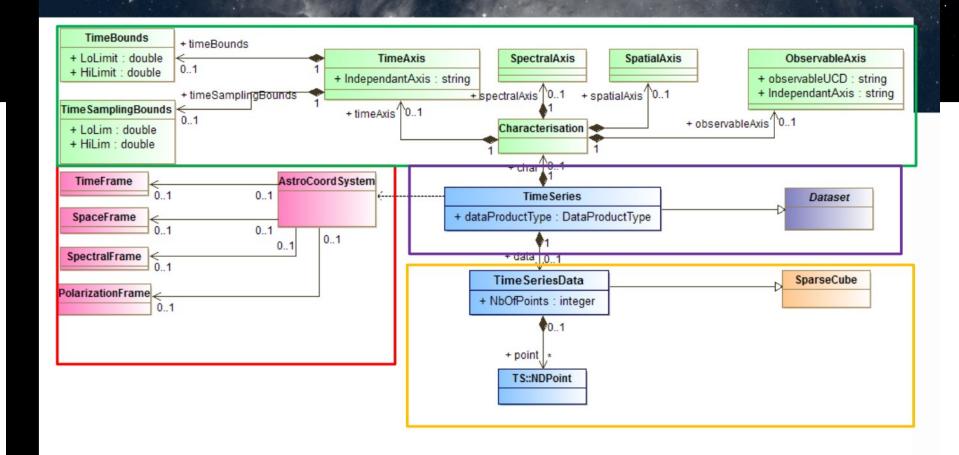

- Consensus so far :
 - TimeSeries data model is
 - based on CubeDM.
 - VO-DML-XML document due
 - Time as independant axis
- Points to be discussed
 - Which dependant axes?
 - How to describe them
 - Cube model / axis agnosticity ?

GOAL

- Here is a sketch for representing metadata involved in the discovery and analysis of time domain information.
- Time series is considered in a large sense as a collection of data samples, taken along a sequence of time stamps.
- F=f(t), with F being
 - a simple value for a measure,
 - a structured value for a measure , and its error, precision , etc.
 - Multiple values (e.g. multi wavelength)
 - A dataset itself, e.g. the data product resulting of a full observation.



TimeSeries Datamodel UML diagram (M.Louys)


Discovery

→ Characterisation DM

TimeSeries representations DataModel serializations

- Data organization :Main data tables + additional Tables/GROUPS of PARAMS (for metadata)
- Which DataModel Mapping? Several proposals to be discussed
 - Utypes (all role and meaning information conveyed at the column level)
 - Classical one (long composed utypes on FIELDS/columns)
 - GROUP/FIELD separation (utypes on both on GROUP, FIELD)
 - VO-DML mapping (rebuild model objects from VOTable)
 - Light (L.Michel)
 - Full mapping (Cresitello)

TimeSeries representations DataModel serializations

- Data organization :Main data tables + additional Tables/GROUPS of PARAMS (for metadata)
- Which DataModel Mapping? Several proposals to be discussed
 - Utypes (all role and meaning information conveyed at the column level)
 - Classical one (long composed utypes on FIELDS/columns)
 - GROUP/FIELD separation (utypes on both on GROUP, FIELD)
 - VO-DML mapping (rebuild model objects from VOTable)
 - Light (L.Michel)
 - Full mapping (Cresitello)

Data section

```
- <GROUP utype="ts:TimeSeriesData" name="TimeSeriesData">
     <FIELDref utype="ts:TimeSeriesData.NDPoint.TimeObservable.TimeMeasure.MJD" ref="HJD"/>
   - <GROUP name="spatial">
        <FIELDref utype="ts:TimeSeriesData.NDPoint.dependantObservedObject.Position2D.SpatialValue2D[0]" ref="raj2000"/>
        <FIELDref utype="ts:TimeSeriesData.NDPoint.dependantObservedObject.Position2D.SpatialValue2D[1]" ref="dej2000"/>
     </GROUP>
   - <GROUP name="Flux">
        <FIELDref utype="ts:TimeSeriesData.NDPoint.dependantObservedObject.CoordMeasure.PhotometryPoint" ref="FLX"/>
        <FIELDref utype="ts:TimeSeriesData.NDPoint.dependantObservedObject.CoordMeasure.PhotometryPointError" ref="FLXERR"/>
     </GROUP>
   - <GROUP>
        <FIELDref utype="ts:TimeSeriesData.NDPoint.dependantObservedObject.CoordMeasure.PhotometryPoint" ref="MAG"/>
        <FIELDref utype="ts:TimeSeriesData.NDPoint.dependantObservedObject.CoordMeasure.PhotometryPointError" ref="MAGERR"/>
     </GROUP>
 </GROUP>
- <FIELD ID="HJD" datatype="double" name="HJD" ref="tif" unit="d" ucd="time;obs.exposure">
     <DESCRIPTION>Epoch at midpoint of observation in heliocentric modified julian date</DESCRIPTION>
 </FIELD>
- <FIELD ID="raj2000" datatype="double" name="raj2000" ref="posf" unit="deg" ucd="pos.eq.ra">
     <DESCRIPTION>Observed RA of the object</DESCRIPTION>
 </FIELD>
- <FIELD ID="dej2000" datatype="double" name="dej2000" ref="posf" unit="deg" ucd="pos.eq.dec">
     <DESCRIPTION>Observed declination of the object</DESCRIPTION>
 </FIELD>
- <FIELD ID="FLX" datatype="float" name="FLX" ref="phot" unit="erg/s/cm2/std" ucd="phot.flux">
     <DESCRIPTION>Photon Flux</DESCRIPTION>
 </FIELD>
+ <FIELD ID="FLXERR" datatype="float" name="FLXERR" ref="phot" unit="erg/s/cm2/std" ucd="stat.error;phot.flux">
- <FIELD ID="MAG" datatype="float" name="MAG" ref="phot" unit="mag" ucd="phot.mag">
     <DESCRIPTION>Magnitude of the object</DESCRIPTION>
 </FIELD>
- <FIELD ID="MAGERR" datatype="float" name="MAGERR" ref="phot" unit="mag" ucd="stat.error;phot.mag">
     <DESCRIPTION>Error of the magnitude
 </FIELD>
- <DATA>
   - <TABLEDATA>
```

28/10/2017

TimeSeries representations DataModel serializations

- Data organization :Main data tables + additional Tables/GROUPS of PARAMS (for metadata)
- Which DataModel Mapping? Several proposals to be discussed
 - Utypes (all role and meaning information conveyed at the column level)
 - Classical one (long composed utypes on FIELDS/columns)
 - GROUP/FIELD separation (utypes on both on GROUP, FIELD)
 - VO-DML mapping (rebuild model objects from VOTable)
 - Light (L.Michel)
 - Full mapping (Cresitello)

Mapping in a VOTable

VO-DML light mapping (L.Michel)

This VOTable contains a time series

Resolve the model namespace

```
<TEMPLATES tableref=" table1">
   <TUPLE dmtype="lmtimeserie:TimeSerie">
       <TUPLE dmrole="lmtimeserie:TimeSerie.TimeAxis" dmtype="lmtimeserie:TimeAxis">
           <VALUE dmrole="lmtimeserie:TimeAxis.TimeFrame" table ref="_0117pYWsEJmSbhJP"
                                                                           ence to the dependant axis mode
       </TUPLE>
        <TUPLE -
                     cmrtimeserie: ilmeserie. UbservableAxis" dmtype="lmtlmese te:observab
        <VALUE dmrole="lmtimeserie:TimeSerie.ObservableModel" source="child">lmobservable
       </TUPLE>
       <COLLECTION dmrole="lmtimeserie:TimeSerie.Points" dmtype="lmtimeserie:Point" arraysize="*">
           <TUPLE dmtype="lmtimeserie:Point">
               <VALUE dmrole="lmtimeserie:TimeAxis.TimeStamp" table ref="timestamp 100" />
               <TUPLE dmtype="lmobservable:Observable">
                   <VALUE dmrole="lmobservable:Observable.long" table ref="pos ra csa 100" />
                   <VALUE dmrole="lmobservable:Observable.lat" table ref="pos dec csa 100" />
                   <VALUE dmrole="lmobservable:Observable.velocity" table ref="velocity 100" />
                   <VALUE dmrole="lmobservable:0bservable.imag" table ref="image 100" />
                   <VALUE dmrole="lmobservable:Observable.magnitude" table ref="magnitude 100" />
               <TUPLE>
           </TUPLE>
       </COLLECTION>
   <TUPLE>
</TEMPLATES>
```

WARNING: Annotations have been simplified for the purpose of this talk.

Perspectives

- DAL chair/vice-chair to propose a DAL guideline as an IVOA note ---> IVOA discussion to be driven
- Model details to be discussed further before writing a common draft
- Discovery metadata proposals to be exposed and discussed
- Serialization proposals to be exposed and commented on volute/ IVOA site
- Next face to face meeting: March (DADI tech forum Edinburgh?)
- Drafts may appear around May IVOA interop in Victoria

