
Searching in provenance
with custom ADQL functions

Markus Nullmeier

Zentrum für Astronomie der Universität Heidelberg
Astronomisches Rechen-Institut

mnullmei@ari.uni.heidelberg.de

Provenance is about graphs

● From the proposed IVOA provenance standard:

Provenance graphs are big and messy

● Closeup

●

●

●

● full graph

Use cases for searching provenance

● Is the background noise of atmospheric muons still present in this
neutrino data sample?

● Who was involved in creating that image? Who may be contacted to
get this information? Which instrument was used?

● Is there a license attached to this data?

● Which pipeline version was used?�

● Show all intermediate processing steps between two datasets

● ...

Almost all of these use case require
complex traversals of the provenance graph

Options for accessing provenance

● Custom web interfaces

– Not really interoperable
● Specific access protocols → ProvSAP draft
● Relational mapping of the provenance graph → ProvTAP
● IVOA adaption of graph query languages

– Preferably based on OpenCypher
● Provenance → property graphs

– Major effort, especially if as an extension of ADQL
– Important provenance use cases not covered...

Graph databases

● Graph databases, e. g.,

–

– Agens Graph (for PostgreSQL, hybrid) – www.bitnine.net
– Microsoft SQL server (since 2017)
– ...

● → are more efficient because of

– storage structures are adapted to graphs
– graph-specific indexing
– search algorithms in backend, not in query language

ProvTAP: traversal queries in “relationalisised” graphs
come down to SQL joins

with new_g as (select array_agg(CAST(row(wgb_entity_id, wgb_activity_id) as p_edge))
 as y from provenance.wasgeneratedby

 join (select unnest((x).e)) as en
 ON (provenance.wasgeneratedby.wgb_entity_id = en.unnest)),

 new_u as (select array_agg(CAST(row(u_activity_id, u_entity_id) as p_edge))
 as y from provenance.used

 join (select unnest((x).a)) as en
 ON (provenance.used.u_activity_id = en.unnest)),

 new_t as (select array_agg(CAST(row(wat_entity_id, wat_agent_id) as p_edge))
 as y from provenance.wasattributedto

 join (select unnest((x).e)) as en
 ON (provenance.wasattributedto.wat_entity_id = en.unnest)),

 new_s as (select array_agg(CAST(row(waw_activity_id, waw_agent_id) as p_edge))
 as y from provenance.wasassociatedwith

 join (select unnest((x).a)) as en
 ON (provenance.wasassociatedwith.waw_activity_id = en.unnest))

select CAST(row(
 (select y from new_g), (select y from new_u), (select y from new_t),
 (select y from new_s))
 as ed_list);

● The user had better get this right…

● No recursive queries possible: many use cases still out of reach

 Pragmatic solution:
custom ADQL functions for ProvTAP

● a. k. a. “user defined” ADQL functions

– Implemented by TAP servers

● prov_search_precursor_nodes(result_nodes, node_search_pattern);
● prov_search_result_nodes(start_nodes, node_search_pattern);
● prov_traverse_nodes(start_nodes, traverse_rule, node_s_pattern);
● prov_linking_graph(result_nodes, start_nodes, filter_pattern);
● prov_search_pattern(result_nodes, start_nodes, search_pattern);
● ...

Implementing those via SQL CTEs, benefits:

● not bound to a particular RDBMS

– Portability of code in, e.g., IVOA implementation notes
● may be used internally in ADQL implementations
● use the same DB for both catalogs, ... and provenance
● “transitional solution”, available today

– until graph+relational DBMS are ubiquitous(10+yrs?)
● Requires array-like data structures

– Possible with JSON data types in all relevant SQL RDBMS
– But PostgreSQL even features first-class arrays :-)

Implementation details (I)
● → traversal of the provenance graph
● 1 traversal step = 1 join over node ids (entities, ...)
● regular ADQL query: >1 traversal step impractical
● network latency → slow global traversals :-(

● Search everything with a single query, e. g.:
● SELECT to_prov(find_prov_precursors(max_depth,
 entities, activities));

● → returns subgraph of all specified nodes’ precursors
in PROV-N format (inside VOTable)

● → or just return specific node or edge types of the precursor graph:
SELECT entity_ids(find_prov_precursors(…));
SELECT was_generated_by(find_prov_precursors(…));

● Implementation details (II)

actual implementation for PostgreSQL:
CREATE FUNCTION find_prov_precursors(max_depth INTEGER, entities TEXT[] = null,
 activities TEXT[] = null, agents TEXT[] = null)
RETURNS graph_list AS $$
WITH RECURSIVE prov_precursors(depth, start_nodes, nodes, next_edges, edges) AS (
 (WITH input_n AS (SELECT CAST(ROW(entities, activities, agents) AS id_list) AS i_nodes)
 SELECT max_depth, i_nodes, i_nodes, new_edges(i_nodes), empty_egdes() FROM input_n)
UNION ALL
 (WITH z AS (SELECT * FROM prov_precursors), new AS (
 SELECT new_target_nodes(next_edges, nodes) AS nodes FROM z)
 SELECT z.depth – 1, new.nodes, n_union(nodes, new.nodes), new_edges(new.nodes),
 e_union(z.edges, z.next_edges)
 FROM z, new WHERE z.depth <> 0 AND NOT empty(new.nodes)))
SELECT CAST(ROW(nodes, edges) AS graph_list) FROM prov_precursors ORDER BY depth LIMIT 1;
$$ LANGUAGE SQL;

