

PROSPECTS FOR JOINT GW AND HIGH-ENERGY EM OBSERVATIONS OF BNS MERGERS

Barbara Patricelli^{1,2}, Massimiliano Razzano^{1,2} and Giancarlo Cella²

¹University of Pisa ²INFN - Sezione di Pisa

DADI Meeting on Gravitational Waves May 31- June 1, 2016 Strasbourg

Summary

Introduction

2 The method

- NS-NS mergers
- GW detections and sky localizations
- GRB simulations

Results

- GW detections
- Joint HE EM and GW detections

Conclusions and future developments

GW150914: first direct observation of Gravitational Waves from a binary BH merger!

Other promising sources for the next GW detections by Advanced LIGO and Advanced Virgo are mergers of NS-NS and NS-BH systems

NS-NS and NS-BH mergers are expected to be associated with short GRBs

Short GRBs

B.Patricelli Prospects for joint GW and high-energy EM observations of NS-NS mergers

joint GW and EM detections

Two possible scenarios:

- EM follow-up: a GW event is detected and an alert is sent to EM telescopes, that start looking for an EM counterpart
- Externally-triggered GW search: an EM transient event is detected and GW data are analyzed to look for possible associated GW events.

We focus on:

- Large FOV telescopes:
 - higher probability of detecting a transient source in the monitored portion of sky
 - good coverage of the large GW error boxes (tens to hundreds of square degrees)
- γ-ray telescopes:
 - γ -ray sky less "crowded" \Rightarrow clearer association of an EM transient to the GW event

Among the various γ -ray observatories, **Fermi** is one of those that better combines huge sky and energy coverage.

The Fermi mission

Two instruments:

- GBM
 - Energy range: 8 keV to 40 MeV
 - FOV: \sim 9.5 sr
 - Sky localization: overall median error for short GRBs of 8°

• LAT

- Energy range: 20 MeV to 300 GeV
- FOV: \sim 2.4 sr
- Sky localization: $r_{68} \sim 0.8^\circ \text{ at 10 GeV on-axis}$

if GBM detects a GRB above a fixed threshold*, *Fermi* automatically slews to move the GRB into the LAT FOV

 * The on-board trigger threshold is \sim 0.7 photons cm $^{-2}$ s $^{-1}$

伺い イヨト イヨト

NS-NS mergers GW detections and sky localizations GRB simulations

Step 1: simulation of the NS-NS mergers

NS-NS mergers

- NS-NS merger rates are dominated by the contribution from Milky Way-like galaxies (see e.g. O'Shaughnessy et al. 2010)
- Maximum distance considered: 500 Mpc
- $\rho_{galaxies} = 0.0116 \text{ Mpc}^{-3}$ (Kopparapu et al. 2008)
- Simulated galaxies are uniformly distributed in volume
- Merging systems: Synthetic Universe (Dominik et al. 2012)
- Bimodal distribution in metallicity: half at Z=Z_{\odot} and half at Z=0.1 $\cdot Z_{\odot}$ (Panter et al. 2008)
- Merger rates: (Dominik et al. 2012)
 - Reference model: Standard Model B
 - "Optimistic" models: V12A (Z=Z $_{\odot}$) and V2A (Z=0.1·Z $_{\odot}$)
 - "Pessimistic" models: V12B (Z=Z $_{\odot}$) and V1B (Z=0.1·Z $_{\odot}$)
- 1000 realizations, each one for a 1 year observing period

NS-NS mergers GW detections and sky localizations GRB simulations

Step 2: GW detections and sky localizations

GW signals

- We assume non-spinning systems
- Random inclination of the orbital plane θ with respect to the line of sight
- TaylorT4 waveforms (Buonanno et al. 2009)

GW detections

- Detector configurations (aLIGO and AdV): 2016-2017 and 2019+ (design) (Abbott et al. 2016)
- Independent duty cycle of each interferometer: 80 % (Abbott et al. 2016)
- Matched filtering technique (Wainstein 1962)
- trigger: at least 2 detectors
- Combined detector SNR threshold: 12
- GW localization with BAYESTAR (Singer et al. 2014)

Step 3: GRB simulations - the prompt emission

Assumptions:

- All the BNS mergers are associated to a short GRB;
- The prompt emission can be observed only if the GRB is on-axis (θ ≤ θ_j);
 (The GRB prompt emission is constant within the jet angle θ_i, zero outside)
- GRB jet opening angles: $0.3^{\circ} \le \theta_j \le 30^{\circ}$ (Panaitescu et al. 2011, Rezzolla et al. 2011, Coward et al. 2012)
- "fiducial" θ_i : 10° (see Duffell et al. 2015)

Detection with Fermi/GBM

- Fermi/GBM FOV: 9.5 sr
- GBM duty cycle: 50 %
- Fermi/GBM sensitivity vs GRB brightness?

NS-NS mergers GW detections and sky localizations GRB simulations

Step 3: GRB simulations - the prompt emission

Brightness: 64-ms peak photon flux P_{64} from the prompt emission in the 50-300 keV energy band

$$L[1 \text{keV} - 10 \text{MeV}] = 4\pi D_{L}^{2} \frac{\int_{1 \text{keV}}^{10 \text{MeV}} \text{EN(E)dE}}{\int_{50 \text{keV}(1+z)}^{300 \text{keV}(1+z)} \text{N(E)dE}} P_{64},$$

Lowest brightness measured by Fermi/GBM

Lowest expected brighness for the simulated short GRBs

- Minimum L: 2 10^{50} erg/s (lowest luminosity of short GRBs with known redshift)
- Maximum distance: 500 Mpc (z~0.12)
- N(E): Band function (with the typical parameters of Fermi/GBM short GRBs)

$$\Rightarrow \mathsf{P}_{64,\mathrm{Min}} \sim 5 \text{ ph cm}^{-2} \text{ s}^{-1} > \mathsf{P}_{64,\mathrm{Min}}^{\mathrm{meas}}$$

 \Rightarrow GBM is sensitive enough to detect all the GRBs in our sample

NS-NS mergers GW detections and sky localizations GRB simulations

Step 3: GRB simulations - the afterglow emission

GRB 090510 as a prototype:

unique short GRB to show an extended emission (up to 200 s) at high energies (up to 4 GeV), as detected by Fermi-LAT (Ackermann et al. 2010, De Pasquale et al. 2010)

$$F(t) = A \frac{(t/t_{peak})^{\alpha}}{1 + (t/t_{peak})^{\alpha + \omega}}$$

Fixing $\alpha = 2$ as required by the standard afterglow theory (Sari et al. 1999), we found

-
$$A=0.07\pm0.01 \text{ ph cm}^{-2} \text{ s}^{-1}$$

- $\omega = 1.60 \pm 0.15$
- t_{peak} =0.301±0.04 s (see also Ghirlanda et al. 2010)

We simulate the GeV afterglows by re-scaling this light curve to take into account the distance of the sources with respect to GRB 090510; for off-axis sources we further correct the light curve for the beaming angle, considering a continuous evolution of Γ .

NS-NS mergers GW detections and sky localizations GRB simulations

Step 3: GRB simulations - the afterglow emission

http://www.slac.stanford.edu/exp/glast/groups/canda/archive/p7rep_v15/lat_Performance.htm

- We extrapolated this sensitivity to the energy range 0.1-300 GeV
- We estimated the integration time $t_{\rm f}$ needed for the simulated GRBs to have a fluence equal to the Fermi-LAT sensitivity; we choose the value of sensitivity corresponding to a GRB localization of 1 deg, for β =-2.

GW detections Joint HE EM and GW detection:

Results: GW detections

Configurations	Work	Number of BNS detections (yr^{-1})	$\%$ of BNS with Loc. $\le 5~{ m deg}^2$	% of BNS with Loc. \leq 20 deg 2	% of BNS with Loc. $\leq 100~{ m deg}^2$	$\%$ of BNS with Loc. $\le 1000~{ m deg}^2$
2016-2017	This work	0.1 (0.002 - 1.5)	3	9	16	70
	Singer et al. 2014 ¹	1.5	2	8	15	-
	Abbott et al. 2016	0.006-20	2	14	-	-
2019+ (design)	This work	2.1 (0.08 - 30)	5	21	50	90
	Abbott et al. 2016	0.2-200	> 3-8	> 8-30	-	-

¹These estimates refer to the 2016 scenario.

B.Patricelli

GW detections Joint HE EM and GW detections

Results: joint HE EM and GW detections - prompt emission

θ_j	EM	EM and GW 2016-2017	EM and GW design
deg	$_{\rm yr}^{-1}$	$_{\rm yr}^{-1}$	yr ⁻¹
0.3	0.045 $< 10^{-3}$ - 0.525	$< 10^{-3}$ $< 10^{-3} - 0.003$	0.008 < 10^{-3} - 0.068
10	1.256 0.021 - 18.201	$0.010 < 10^{-3} - 0.130$	0.2130 0.001 - 2.692
30	3.736 0.052 - 54.560	0.022 < 10 ⁻³ - 0.348	0.549 0.008 - 7.249

🗇 🕨 🖌 🚍 🕨 🤇 🗐 🖗

Results: joint HE EM and GW detections - afterglow emission

		No latency	
Integration	EM	EM and GW	EM and GW
Time (s)	(yr ⁻¹)	2016-2017 (yr ⁻¹)	design (yr^{-1})
10	0.12 (0.003 - 1.53)	$0.001 \ (< 10^{-3} - 0.01)$	0.02 (0.001 - 0.25)
100	0.20 (0.004 - 2.44)	$0.002 (< 10^{-3} - 0.02)$	0.04 (0.001 - 0.45)
10 ³	0.32 (0.009 - 4.15)	$0.003 (< 10^{-3} - 0.05)$	0.07 (0.002 - 0.81)
104	0.52 (0.02 - 6.64)	$0.007 \ (< 10^{-3} - 0.09)$	0.12 (0.004 - 1.36)

		10 minute latency	
Integration	EM	EM and GW	EM and GW
Time (s)	(yr ⁻¹)	2016-2017 (yr ⁻¹)	design (yr^{-1})
10	$0.002 \ (< 10^{-3} - 0.05)$	$< 10^{-3} (< 10^{-3} - 0.01)$	$< 10^{-3} (< 10^{-3} - 0.04)$
100	0.09 (0.003 - 1.17)	$0.002 (< 10^{-3} - 0.02)$	0.03 (0.001 - 0.37)
10 ³	0.30 (0.009 - 3.83)	$0.003 \ (< 10^{-3} - 0.05)$	0.07 (0.002 - 0.80)
104	0.51 (0.02 - 6.47)	$0.007 \ (< 10^{-3} - 0.09)$	0.12 (0.004 -1.34)

(4回) (日) (日)

Conclusions

Conclusions

- We have estimated the GW detection rates and sky localizations for NS-NS mergers, finding values consistent with the ones reported in literature
- We have presented estimates of the joint HE EM and GW detection rates with *Fermi*

Next steps

- Extension to NS-BH systems
- Extension of the work to other observatories (X-ray, optical...)
- Use of galaxy catalogs in the simulations
- Public database?

Use of galaxy catalogs

Which galaxy catalogs?

- Good level of completeness
- Good redshift coverage (at least up to ~ 1 Gpc)
- GLADE (Dalya et al.)
 - http://aquarius.elte.hu/glade/index.html
 - Constructed from four existing galaxy catalogs: GWGC, 2MPZ, 2MASS XSC and HyperLEDA
 - Complete up to \sim 70 Mpc (50 % of completness at \sim 300 Mpc)
- GWENS (Nissanke et al.)
 - https://astro.ru.nl/catalogs/sdss_gwgalcat/index.html
 - Obtained using SDSS photometric and spectroscopic data
 - Problems within 100 200 Mpc, but...
 - ...it extends up to ${\sim}1$ Gpc

Public database?

- Which data?
 - Ascii tables with all simulated NS-NS systems (masses, sky position, distance...) $\sim 130~{\rm Mb}$
 - Ascii tables with GW detections (SNR, sky localization area...) \sim 80 Mb
 - Skymaps (fits files) \sim 50 Gb
- VO tools?

Computing resources

Simulations:

- 1000 1-year runs
- 2 metallicities (Z)
- 3 theoretical models for each Z
- 2 GW detector configurations
- \Rightarrow 12000 realizations

Example

- 1 job
 - (1 run, Standard Model B, "2016-2017" configuration)
- CPU time: \sim 2200 s
- elapse time: ~ 1 hour
- Memory usage: $\sim 1.5~{
 m Gb}$

Backup slides

Backup slides

B.Patricelli Prospects for joint GW and high-energy EM observations of NS-NS merge

A ►

∃→ < ∃→</p>

GRB afterglow emission - Lorentz factor

Evolution of the Lorentz factor Γ of the shell using an approximate sharp transition from the coasting phase, when

 $\Gamma \sim \Gamma_0$

to the deceleration phase, when

$$\Gamma(t_{\rm obs}) = \Gamma_0 (t_{\rm obs}/t_{\rm dec})^{-3/8};$$

furthermore, after the jet break we further evolve the Lorentz factor as

B.Patricelli

$$\Gamma(t_{\rm obs}) \propto (t_{\rm obs}/t_{\rm j})^{-1/2}$$

(see Sari et al. 1998, Rhoads et al. 1999).

- Γ_0 = 2000 (Ghirlanda et al. 2010, Ghisellini et al. 2010)
- $t_{\rm dec}$ ${\sim}0.3$ s, corresponding to $t_{\rm peak}$ (see also De Pasquale et al. 2010, Corsi et al. 2010)

$$\rightarrow t_{dec}^{sim} = t_{dec} \times \frac{1+z}{1+z_0}$$

- $t_{j}\sim 2 \; 10^{3}$ s (Panaitescu et al. 2010)

$$\rightarrow \mathsf{t}_{\mathsf{j}}^{\mathrm{sim}} = \mathsf{t}_{\mathsf{j}} \times \frac{(1+z)(\theta+\theta_{\mathsf{j}})^{8/3}}{(1+z_0)\theta_{\mathsf{j}}^{8/3}}$$

Introduction The method Results Conclusions and future developments

The Band function

$$N_{E}(E) = \begin{cases} A\left(\frac{E}{100keV}\right)^{\alpha} \exp\left(-\frac{E}{E_{0}}\right) & (\alpha - \beta)E_{0} \ge E\\ A\left[\frac{(\alpha - \beta)E_{0}}{100keV}\right]^{(\alpha - \beta)} \exp(\beta - \alpha)\left(\frac{E}{100keV}\right)^{\beta} & (\alpha - \beta)E_{0} \le E \end{cases}$$

Band et al. (1993)

B.Patricelli Prospects for joint GW and high-energy EM observations of NS-NS merger