
Fig. 1

Fig. 2

Fig. 3

1. ADQL 2.1: DaCHS Implementation

(cf. Fig. 1)

Markus Demleitner
msdemlei@ari.uni-heidelberg.de

(cf. Fig. 2)

ADQL 2.1 is in PR (yes!).

I’ve implemented most of it in DaCHS.

• Stuff done I’m happy with

• Stuff done I’m unhappy with

• Stuff not done I’m unhappy with

(cf. Fig. 3)

1

2. Happy: Geometries

• POINT(ra, dec) rather than POINT(’ICRS’, ra, dec): polymorphism was a bit tricky
(POLYGON!). Otherwise: great, in particular for 2.1-only implementations

• CIRCLE(POINT(ra, dec), radius) – a bit involved because of things like CIRCLE(center col,

radius), but all worth it.

• DISTANCE(ra1, dec1, ra2, dec2)<radius instead of 1=CONTAINS(POINT, CIRCLE) –
good move.

• DISTANCE(p1, p2)<radius tricky index-wise if using p2 from an upload, but DaCHS will
scupper q3c some day anyway.

3. Happy: CTEs

Common Table Expressions are great.

I’ve put one into my server’s examples:

WITH sample AS (

SELECT * FROM gdr2mock.main

WHERE distance(ra, dec, 66.73, 75.87)<2)

SELECT ROUND(age*10)/10 as bin,

avg(ra) as m_ra, max(1/parallax) as x_px

FROM sample

GROUP BY bin

Except: I’m forcing query name to be regular identifier – please!

By the way, these are surprisingly simple in implementation. Just go for it if your DB can do
them!

4. Happy: IN UNIT

DaCHS has had IN UNIT(pmra, ’deg/yr’) for quite some time and people love it.

Join us now! (Though it may be a bit of work if you don’t do unit inference yet)

5. Happy: Misc

• LOWER(s) – straightforward, frequently useful, hard to imagine a DBM that would give
trouble with it.

• OFFSET – straightforward, grammar looks ok.

2



6. Ah well: CAST, TIMESTAMP

CAST(’123’, INTEGER) translates easily, but

• Grammar for CAST is missing

• Current DaCHS grammar for CAST doesn’t have SQL length, array. . .

• The grammar needs some way of saying “type”

• CAST(x, TIMESTAMP) is the same as TIMESTAMP(x) – that’s ugly

Let’s not have TIMESTAMP(x)

7. Ah well: ILIKE

Case-insensitive string matching sounds good:

instrument ILIKE ’hst%’

– but RegTAP already defines

ivo nocasematch(instrument, ’hst%’).

Having both sucks, and we should drop one.

(RegTAP 1.1 is in WD. . . )

DaCHS doesn’t have ILIKE yet. Speak out!

8. Ah well: set operations

SELECT a,b FROM table1

UNION SELECT a,b FROM table2

EXCEPT (

SELECT a,b FROM table3

INTERSECT

SELECT a,b FROM table4)

They are useful, but I fear the ADQL 2.1 grammar might be bad.

DaCHS uses a different grammar, so it does not count as implementation at this point.

9. Resist, Refuse: Misc

• BOX(p, width, height) – close to unimplementable on top of pgsphere with questionable
utility. Let’d deprecate BOX altogether.

• INTERVAL type – severely underspecified right now, nobody seems to work on it

3

10. R,R: boolean functions

The current grammar lets you write

WHERE bool fct(a)

and

WHERE True

but not, I think,
SELECT * FROM

(SELECT bool_fct(a) AS x FROM table) as q

WHERE x

This is all too confusing.

Let’s not have more than x=True or f(a)=True lest things get out of hand.

11. R,R: bitwise operators

The spec wants bitwise operations as operators: flags&8=8.

DaCHS does them as functions: BITWISE AND(flags,8)=8.

Operators are a bit more readable, yes, but the grammar is an order of magnitude harder to
write, and what’s currently in the spec almost certainly is not what we want.

Let’s have functions!

12. Other Issues

• The PR references the STC-S note for REGION argument – that’s underspecified and
overkill. Let’s copy the TAP-1.0 appendix.

• The grammar doesn’t reflect all the text says (look at the CRICLE grammar)

• Do we want geometry-values user-defined functions?
(gavo move pm returning a POINT is fairly popular to change epochs)

13. In Conclusion

Blog post on this with a view to interested astronomers:

https://blog.g-vo.org/speak-out-on-adql-2-1/

Offer: I’ll volunteer for doing edits we find consensus on.
Thanks!

4


