

Semantic tags for species and lines identification

N.Moreau, C-M. Zwolf and VAMDC Consortium Paris Observatory, LERMA

- e-infrastructure to access A&M data
- Databases connected through a middleware
- Standards :
 - for querying databases (VAMDC-TAP)
 - for exchanging data (XSAMS xml schema)
 - to describe services (VOResource extension)

The species database

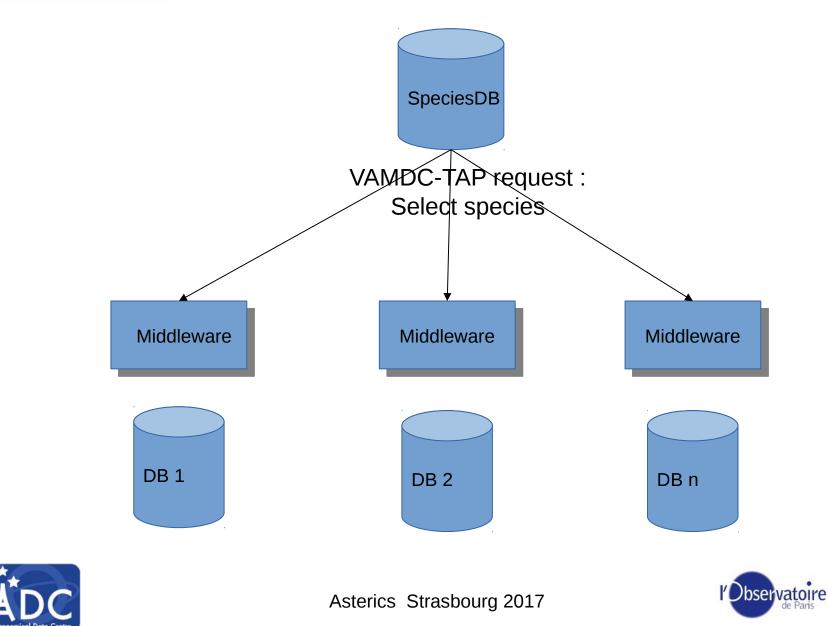
- http://species.vamdc.eu
- Central repository of species
- Quick discovery of databases content
- Provides new features to other elements of infrastructure :
 - species name suggestion
 - dynamically test availability of a species in a DB
- Queryable with a JSON API

- Chemical species naming is not homogeneous
- For atoms : we use symbol (+ and ion charge)
- For molecules, it can be ambiguous
- VAMDC uses InChi standard (International Chemical Identifier)

InChi / InChiKey

• Species description in InChi format :

Ex: 1S/H, 1S/He, 1S/C/q+1


- Key is a 27 characters hash of InChi (SHA-256) :
 - GKDCRJWYAGBLFY-UHFFFAOYSA-N
- This identifier is used to bind the different "versions" of a species

Filling the database

LERMA

Result in web interface

BASECOL: VAMDC-TAP interface (Atomic states, Atoms, Collisions, Molecular states, Molecules)

Name	Stoichiometric formula Formula		InChi	Mass number	InChlKey	Charge	
C3	C3 C\$_3\$		InChI=1S/C3/c 1-3-2	36	NVLRFXKSQ QPKAD- UHFFFAOYS A-N	0	

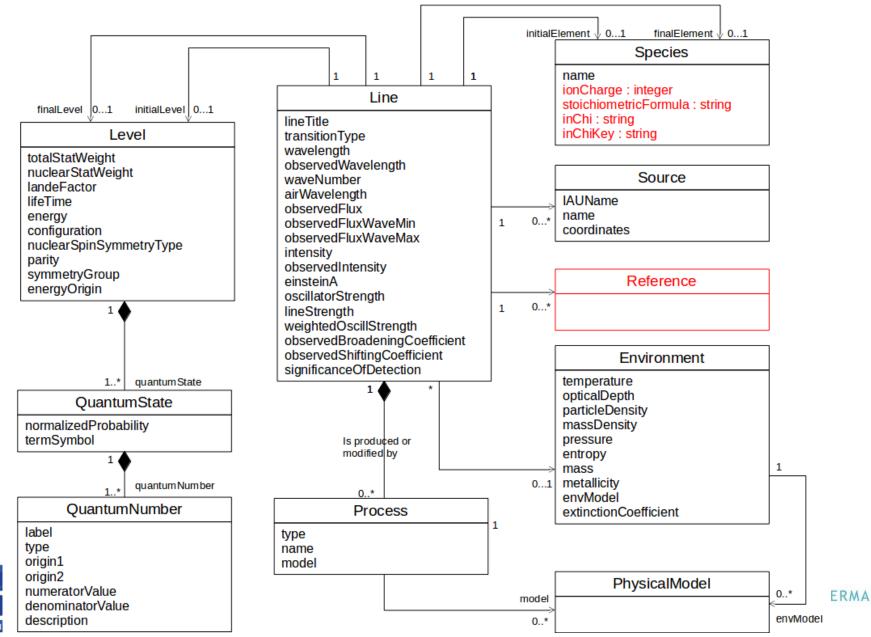
CDMS (Atomic states, Atoms, Molecular states, Molecules, Radiative transitions)

Name	Stoichiometric formula Formula		InChI Mass number		InChlKey	Charge	
Propadienediyl idene, tricarbon	С3	C3	InChI=1S/C3/c 1-3-2	36	NVLRFXKSQ QPKAD- UHFFFAOYS A-N	0	

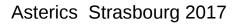
LXcat (Atoms, Collisions, Molecules)

Name	Stoichiometric formula Formula		InChi Mass numbe		InChlKey	Charge	
C3 radical	C3	C3	InChI=1S/C3/c 1-3-2	36	NVLRFXKSQ QPKAD- UHFFFAOYS A-N	0	

UMIST Database for Astrochemistry (Atoms, Collisions, Molecules)


Name	Stoichiometric formula	Formula	InChi	Mass number	InChlKey	Charge	
None	C3	C3	InChI=1S/C3/c 1-3-2	36	NVLRFXKSQ QPKAD- UHFFFAOYS A-N	0	

SSLDM proposal



- Dbs are available in a standardized way
- Each one describes its own capabilities
- returned data
- possible request parameters
- They can be listed with a getCapabilities request

Ex : <u>CDMS</u>

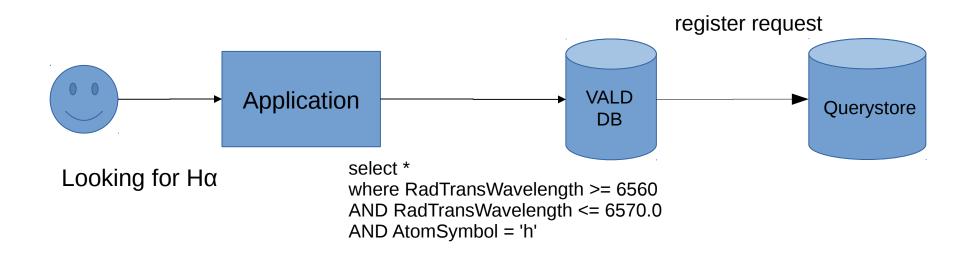
• They are chosen from terms in a dictionary

Databases description

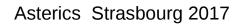
- Descriptions are processed when data are included in the DB for the 1st time
- Tags are used to describe content
- Users know immediately type of data they can expect

name	category	prefix
Atoms	Species	Atom
Atomic states	Species	AtomState
Molecules	Species	Molecule
Molecular states	Species	MoleculeState
Collisions	Process	Collision
Cross sections	Process	CrossSection
Radiative transitions	Process	RadTrans
Radiative transitions shifting	Process	RadTransShifting
Radiative transitions broadening	Process	RadTransBroadening
Non radiative transitions	Process	NonRadTran

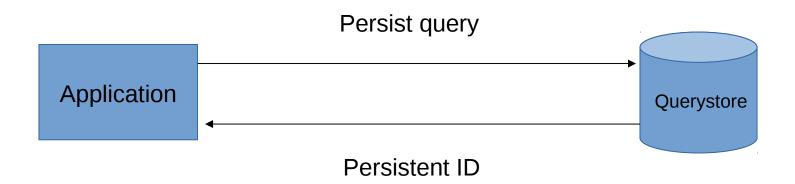
- Well known need
- No mechanism in VAMDC
- Requests are generally done on :
 - Interval (wavelength, frequency)
 - Species name and charge
- Finding one specific line can be tedious
- Transitions have an id but their persistence is not guaranteed

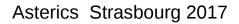


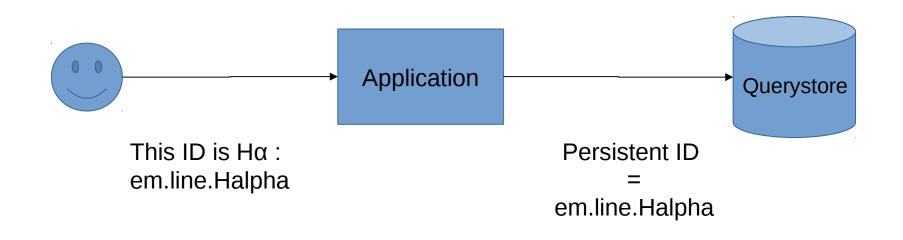
- A solution : using the query store
- It contains already executed requests
- Require a request description mechanism
- For well-known transitions, ucd can be used :
 - em.line.Halpha
 - em.line.Hbeta
 - em.line.Hgamma
 - •
- Additional list of keywords to be defined



Results from vald VAMDC node


Unselect all	<pre> \$ Spec lon X </pre>	¢ Wavelength (A) X	♥ Wavelength reference X	Log10 [♥] Weighted Oscillator Strength	Lower state description	Cower energy(1/cm)	♦ Lower parity X	Lower total angular momentum	Upper state description	Upper energy(1/cm)	♥ Upper parity	Upper total angular momentum X
×	<u>H1</u>	6564.60997919	<u>Bvald-</u> CDROM18	0.710	n=2	82259.1050	even	1.5	n=3	97492.3020	even	2.5





- Users will have access to a web search interface
- Queries tagged with the searched ucd will be displayed
- Tagging is done by request author
- For well known lines, tagging could be performed by data providers
- In addition to a list of keywords, free text description could be used

