

The ESO Science Archive: towards the La Silla Paranal *Armazones* Observatory

Martino Romaniello European Southern Observatory

The E-ELT is the next (giant) step in optical-infrared astronomy: built and operated by ESO

39 meters in diameter, filled segmented aperture

- 798 1.4-meter hexagonal segments
- 5 mirror adaptive optics design: M4 with ~8000 actuators
- Laser Guide Stars
- Two Nasmyth platforms for the instruments
- Possibility of a Coudé focus for ultra-stable instruments

First light in October 2024

Top-level science cases

Extra-solar planets: discovery of Earth-like planets, direct imaging of larger planets and their atmospheres

Resolved stellar populations: resolve a representative sample of galaxies in the nearby Universe into stars to reconstruct directly their formation and evolution history

Physics of the high redshift universe: spatially resolved spectroscopy to the highest redshift galaxies to derive their stellar masses, ages, metallicities, star formation rates and dynamical states across cosmic time

Cosmology and fundamental physics: direct observation and measurement of the expanding Universe; variations the of fundamental physical constants over cosmic time

One Observatory: Armazones and Paranal

ES

ELT science operations

The E-ELT will be the fifth (EXTREMELY) big telescope of the La Silla Paranal Armazones Observatory

Operational model derived from the VLT

- > Evolution, not revolution
- Competitive access to observing time
- Mix of different observing modes and programme types to optimize efficiency and science return
- Science archive: raw data, data products

La Silla Paranal Observatory as a fully functional, highly productive, cutting-edge "precursor"

5

Not a challenge: data volume

- It took 20 years to reach 1 PB
 - Doubling timescale of a couple of years
- Compute resources not an issue
 - E.g. the infrastructure to generate science ready processed data for MUSE costs a fraction of the development cost of the data processing software

The challenge: data complexity

	Outerspace	Atmosphere	Telescope	AO	MICADO
	Science object	Composition model (thermal / non-thermal)	M1	SCAO	Entrance window
Pixel data =	Galactic extinction	Kinematical model for ~32 layers (AO)	M2	MCAO	Derotator
observatory ®	Cosmic rays		МЗ		Collimator
science	Moon, planets, bright stars		M4		Filter
	Zodiacal light		М5		ADC
			М7		Imager optics, reimager
T	MIC	ADO			Pedestal, pixelsensitivity, persistence, crosstalk, dark current, read-outl
Observables	Astrophysical laws	On-site measurements (T, r, H, P, v)	DM telemetry	WFS telemetry	Detector exposures

ESA workshop Verdoes Kleiin (ESC

The ESO Science Archive Cheat Sheet

Scientific and operational archive of the La Silla Paranal Amazones Observatory

VLT, VLTI, Survey Telescopes, NTT, 3.6 metre, national telescopes, hosted experiments ... and the ELT ...

Content:

- > 44.8 Million files, 1.01 PB data
- Ingestion: ~130 TB /year
 - > Raw: ~74 TB/year
 - Products (all flavours): ~48 TB/year
 - > Miscellanea: ~9.5 TB/year

Deliveries to external users: ~200TB/year

More data goes out than it comes in

The science user community

9

The science user community: processed data

10

Observing vs archive

- Users of archive data: 30% have never applied for time, neither as PIs nor co-ls; 37% have never gotten time, neither as PIs nor co-ls
 - > For comparison, 1/3 of the Phase 1 PIs have never got time

ASTERICS DADI ESFRI Forum & Training Event 2 | 13-14.12.2017

Archive publications

12

telbib.eso.org

The evolution of the ESO Science Archive

- High-level goals
 - Foster the discovery and use of ESO data (LPO and ALMA)
 - Place them in the wider context of other data
- Rich interactive interface to ESO data
 - Full exploitation of curated metadata
 - Query on physical properties (position, energy, resolution, depth, signal-to-noise, ...)
 - Graphical previews and interaction to aid discovery
- Share data within the Virtual Observatory
 - ESO data discoverable beyond the dedicated interface, without redeveloping existing tools
 - Support for complex, multi-archive queries
 - Restricted to common metadata

Number of OBs: 8847 Filters:							
Filter	Tot.exp.time	Abmaglim max					
<i>Ks:</i> 1927	91576	18.69					
r_SDSS: 173	3800	22.02					
NB_659: 141	14400	21.23					
g_SDSS: 107	3000	23.01					
Y: 101	10560	20.20					
Z: 101	10560	21.09					
<i>i_SDSS:</i> 101	2000	21.10					
u_SDSS: 93	10800	22.16					
H: 87	3552	18.75					
J: 87	10656	19.75					

870u: 2

0

824666 RESULTS

SHOWING 100

ESO 2017

ALADIN

With great accessibility comes great responsibility...

"...a perverse flaw in the 2002 UVES data, which was not corrected by the applicable ESO pipeline"

Some conclusion...

The ESO Science Archive has quite a bit of VO inside and outside

Standards, tools, protocols, …

There is no point in reinventing a wheel that is working

- Still, the wheel needs to evolve to cater for specific needs
- From a project point of view, it is important to have a timeline for when changes will be implemented
- Time domain will keep growing in importance
 - Main drivers: exoplanet searches and transient follow-up
- Data quality and curation are and will be key for success
- EOSC seems like a very promising way forward
 - "Data stewardship"