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Tiling strategy

* Goal: Coverage of largest possible B
sky-localization in a given number ‘
of telescope pointing.

/B

» Contour-Covering: Given X% sky- / |
localization confidence interval JA
contour, create a set of tiles that V § /

completely enclose this contour. -/ \ y

» Ranked-Tiling: Sample the sky- Y
localization in discrete 2D
intervals of the telescope FOV.
Select from the top of the list of
these samples the top X%
containing tiles.
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Scenario study

- A 100,000 Binary neutron star GW waveforms were
injected in simulated LIGO-Virgo noise from

2015-16 (Singer et al. (2014))

* Around 1000 of these were detected in low-latency
pipeline.

* We used the sky-localization maps to study and
compare the various tiling strategies.



Results

Ranked-Tiling method
mathematically gives the
minimum number of tiles
to cover X%.

Larger FOVs and smaller
confidence intervals benefits
most
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Optimization of tiles

+ Caveat: Observers might not have freedom to optimize tiles.
+ Optimization is an NP-complete problem.

+ We conducted the optimization by iteratively shifting the position of the
tiles to.

ID CCtiles CC-Optimized | Tile reduction (%) RT tiles RT-Optimized | Tile reduction (%)

288172 531 462 422 418
288830 38 37 29 29
303684 129 117 96 96
313831 5 = 3 3

1087 385 359 302 302
468530 307 273 217 213
588762 466 437 365 364
1065078 264 237 192 189
1027955 10 9 9 9

687313 469 453 426 425




Monoliths vs distributed FOV

Gravitational wave sky-
localizations - complex
structures, elongated, often
multimodal.

mm 2015

100+

80+

Observing area scales
linearly with FOV of
telescopes, coverage scales
less strongly:.

False positive is proportional

to observing area.
20

Distribute FOV into
multiple smaller FOV
telescopes.

Percentage improvement in sources covered in 100 Deg?
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Depth-vs-Coverage

» Detection depends on coverage of the sky-localization
and depth of observation.

- With finite time available over a night, depth of
observation is at the expense of coverage.

» Is there any benefit in the initial era of LIGO-Virgo
operation to go deeper rather than wider?



Limiting magnitude

Sources distributed uniformly in
volume

« Total observation time = 2 hours
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Depth vs coverage for detected sources
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« All the results of this work can be found in arXiv:

1511.02673

» Questions? (Before I move to the second part of the

talk)



EM-Bright Classification

Framework



The Goal

(Given a gravitational-wave detection by the
low latency pipeline and rapid parameter
estimation, what is/are the best quantitative
information(s) we can provide to our
observing partners regarding likelihood of
EM-counterpart of the event.



The Physics

* The compact
object(s) get tidally
disrupted to create
the mater that
power the EM-
counterpart

« ISCO of the central

object is key.

»  Mass ratio, spin of
BH, NS EoS.

Density
[ ‘2.2e-02

Time=0




The Method

» W are using Foucart’s fitting formula ( arXiv:
1207.6304) to estimate the remnant mass outside the
black hole at the late times.

» Setting a threshold on this mass allows us to quantify
the likelihood of EM emission.

- As an input we are using the mass and spin posteriors
from Bayesian parameter estimation samples.

» Computation of likelihood of EM-emission from
detection pipeline point estimates using ambiguity

ellipse.



Sample result from MCMC runs

Misalignment Remnant mass

P(NS) p(EM-bright)

(degrees) (solar mass)
0.7 0.0 0.16 0.896 0.272
0.7 60.0 0.00 0.865 0.0
0.9 0.0 0.39 0.722 0.512
0.9 60.0 0.09 0.986 0.029

Injection parameters: m; = 10.0, mz = 1.4, waveform = SpinTaylorT4

Template waveform = SpinTaylorT4 aligned, m1 =10.0, m2=1.4



EM-probability from GW triggers

* GW trigger will give us point estimates of masses and the
spin components along the orbital angular momentum.

* Before the low-latency parameter estimation results start
coming, we can use compute ambiguity ellipse for the
trigger parameters.

* We construct the ambiguity ellipses by computing the
3D Fisher matrix around the triggered parameter.

* The 2D ellipses has been extended for this work to 3D
ellipsoids (m1, M2, x1) .



3D Ambiguity Ellipsoid
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Basic model

Parameter estimation
pipelines

Detection pipelines

3D ambiguity
ellipsoid
samples

EM-Bright
classification

Disk-mass

calculator




Preliminary test

* Conducted initial tests on 100+ Neutron star-Black

hole coalescence events.

» Here we are skipping the detection pipeline,
pretending the trigger parameters same as injected.

* Computing 3D ambiguity ellipsoid for each cases and

populating it with a million sample points.
» Pruning unphysical points: (7 > 0.25 or n <0, [x1| > 1.0)

» Computing probability of remnant disk mass greater

than threshold



Result
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Thanks you



