
Authentication in Web Services
and TAP-1.1 specific issues

Patrick Dowler
Canadian Astronomy Data Centre

Web Service A&A @ CADC

● 25 RESTful web services in operation (CADC + CANFAR)
− 16 are IVOA standard services
− 9 are custom services

● all of these use VOSI-capabilities
● all of these have at least one capability which describes

authenticated access (~45 capabilities)

● clients consult a runtime-registry to find the capabilities
− optimised for resourceID → capabilities URL

● clients read the capabilities document and look for the combination
of {standardID,securityMethod} that match:
− the feature they want to invoke
− the credentials they want to use to authenticate

● @CADC: {resourceID,standardID,securityMethod} → {accessURL}
happens several times per request & millions of times per day

Why is it so hard to add A&A to web services?

● allow use of a variety of technologies: legacy, current, shiny

● allow flexibility in web service implementation and deployment
− sometimes constrained by other API rules

● services have to describe what authentication methods they support

(IVOA registry, VOSI-capabiities)

● clients have to make use of the (self) description to be able to use

services

● balance -- can’t make any of these too onerous or restrictive

VOSI-capabilities 101

● a web service endpoint for a self-describing service
− e.g. http://example.net/service/capabilities
− (contains 1+) capability standardID: what feature is this?
− (contains 1+) interface: a single callable endpoint
− contains 1 accessURL
− contains 0+ securityMethod*

<capability standardID="ivo://ivoa.net/std/FOO#feature”>
 <interface xsi:type="vs:ParamHTTP" role="std" version="1.0">
 <accessURL use="full"> https://www.example.net/impl/foo </accessURL>
 <securityMethod standardID="ivo://ivoa.net/sso#tls-with-certificate" />
 </interface>
</capability>

Test Particle: TAP and Authentication

● VOSI-capabilities / VOResource model is that a capability is a single
feature

● In TAP-1.0, we specified relative names for the endpoints:
− /availability
− /capabilities
− /tables
− /async
− /sync

● BUT we specified one standardID for the base URL
− clients have to append the specified names
− auth methods that use alternate path names not feasible

● TAP-1.0 doesn’t play nice with all securityMethod(s)
● TAP-1.1 must support authentication and must provide a good

backwards-compatible experience for older client s/w

TAP and Authentication

● prototype #1: one capability for each securityMethod

● pros:
− none

● cons:
− naive client that assumed one anonymous capability per

standardID would fail or depend on ordering
− lots of redundancy in VOSI-capabilities documents
− inside-out with respect to the VOResource model where

securityMethod is at the leaf
− makes an assumption about what multiple capability(s) with the

same standardID means …

TAP and Authentication

● prototype #2: separate standardID for sync and async
ivo://ivoa.net/std/TAP#sync-1.1
ivo://ivoa.net/std/TAP#async-1.1
SODA-1.0 defines #sync-1.0 and #async-1.0
VOSpace-2.1 defines #transfers and #sync-2.1

● pros:
− did not break any old clients (we had this in operational use for

years)
− matches design of VOResource
− backwards compatible records simple
− allows for different TAPRegExt metadata (e.g. optional features,

limits) in sync and async
● cons:

− duplicates TAPRegExt info in sync and async
− makes example RegTAP queries return different (more) results

TAP and Authentication

● prototype #3: separate interface type for sync and async
● lookup becomes:

{resourceID,standardID,interfaceType,securityMethod} → accessURL

● pros:
− does not break any old clients (in operational use for a few

months)
− backwards compatible records possible

● cons:
− backwards compatible records are subtle
− set of interface(s) mixes base (client appends resource name)

and full (accessURL includes resource name)
− makes example RegTAP queries return different (more) results

that users have to grok

TAP and Authentication

● approach #1: it’s horrible and it breaks stuff

● approach #3 works, BUT: introduces subtle use of interface types
and mixed interface style in a single capability
− ruled out at College Park Interop (Nov 2018)

● approach #2: separate #sync-1.1 and #async-1.1
− matches the VOResource/VOSI-capabilities design
− works the same way as all other IVOA services
− agreed to go back to this at College Park Interop (Nov 2018),

dissenters remain

● So…. Now what?

One URL to rule them all

● We have had people (CADC resident astronomers) ask questions
like:

What is the URL to download this file?

What is the URL for this service?

One URL to rule them all

● We have had people (CADC resident astronomers) ask questions
like:

What is the URL to download this file?

What is the URL for this service?

● new goal: achieve that in deployment and then it would by nature be
easy to describe

<capability standardID="ivo://ivoa.net/std/TAP">
 <interface xsi:type="vs:???" role="std" version="1.1>
 <accessURL use="full"> https://www.example.net/tap </accessURL>
 <securityMethod standardID="ivo://ivoa.net/sso#anon" />
 <securityMethod standardID="ivo://ivoa.net/sso#tls-with-certificate" />
 <securityMethod standardID="ivo://ivoa.net/sso#cookie" />
 <securityMethod standardID="ivo://ivoa.net/sso#OAuth" />
 </interface>
</capability>

One URL to rule them all

● we have one prototype service where one accessURL works for:
− anonymous
− #tls-with-client-cert
− #cookie
− and should work with other token systems

− BUT: separate URL for #BasicAA because that URL behaves
differently (use of HTTP status codes to trigger client to retry
with auth)

− everything is on https (OK)
− could simplify VOSI-capabilities if multiple securityMethod(s) OK

again (SSO-2.0 says something, VOResource plans... TBD)

One URL to rule them all

● my thoughts, in no particular order:
− VOSI-capabilities are for users with a client tool
− the people who really want to use #BasicAA are using curl/wget

and not reading the capabilities anyway
− use one interface/accessURL per capability
− I would not “register” the #BasicAA endpoints; just local docs

− simple anon service: OK
− simple service with only #BasicAA: OK
− service with multiple authentication methods: OK but cannot

include #BasicAA
− clients can still do username/password auth but it would be

implemented as call this related service and get a cookie or
token (this is how the astroquery cadc and esac TAP clients
work) -- interoperable? TBD

Final Thoughts

● One URL to rule them all
− auth in web services to be simple
− some technologies/combinations not supported
− restricts deployment
− answers that question from astronomers
− do we need an #anon securityMethod or just assume/try?
− looks like this works; haven’t gotten stuck yet

● One standardID per feature aka everything is a capability
− use all the 1-n relations in capabilities (VOResource et al)
− all technologies/combinations supported
− allows more flexibility in deployment
− more complex for clients
− proven to work

