
STOA – Script Tracking 
for Observational 

Astronomy
Peter Hague - University of Cambridge

1

H2020-Astronomy ESFRI and Research Infrastructure Cluster 

(Grant Agreement Number: 653477).

H2020-Astronomy ESFRI and Research 

Infrastructure Cluster (Grant 

Agreement number: 653477).



Background

• BaSC and other projects required batch operations 
on ALMA archive

• STOA emerged from my efforts to streamline and 
automate these operations

• Now a standalone web application: 
https://github.com/petehague/stoa

https://github.com/petehague/stoa


Objectives

• Want to perform actions in batches

• Each instance of an action may need to run 
differently

• Must track provenance of result – ensure we know 
precisely which version of each script led to a 
specific output

• Must be able to share data, processes and outputs

• Final results should be easily accessible to others



Example task

• Want to run SExtractor on every 
observation that matches a 
certain criteria

• Ideally, archive should contain 
clean image, primary beam 
correction, and the corrected 
image 

• One or more may not be 
present. May also not be 
immediately clear from 
metadata which is which, so 
algorithm has to guess

• Sometimes guesses wrong…



Workflows

products.py

kernel.py

sourcefind.py cutouts.py

CWL

A B

B requires 
output of A



Worktables

• Each row is an execution of the 
workflow

• Writable inputs, read-only 
outputs

• Software tracks status (e.g. if 
currently shown outputs 
correspond to inputs or if new 
outputs are pending)

• Worktables connected in 
relational style; automatically 
triggering recomputation

* Hidden fields – tracking processing status etc.

Inputs Outputs*



Worktables

• STOA allows access to a worktable as Owner, 
Collaborator, and Reader. 

• Owner can initiate computation, collaborator can 
flag rows and add comments, and reader sees 
worktable as a simple read only table

• Worktables can be served up as .fits downloads or 
through VO cone search protocol.



Example 
Download/VO 
Service

Join Operation
Using output of 
a table as key for 
another

Time trigger



Example 



Example 



Sourcefind.cwl

Example 

Kernel.cwl

makeparam

Sextractor.cwl

Sourceprofile.cwl

Sourcecutout.cwl

CWL allows much more complex workflows, invoking multiple steps



Templates/Built in actions

Basic operations (e.g. bash ‘find’)

Access to services

Time trigger – initiate computation at regular 
intervals

Public table server



Example 

Current public table interface



The Future

• Authentication – can’t have public STOA services 
without it!

• Figure out how STOA fits in with current 
services/registries

• Expand the action library

• Help users to build worktables more easily

• Look at more integration with other software –
specifically for provenance and minimal 
recomputation



Summary

https://www.github.com/petehague/STOA

Available under APACHE license

Contact: prh44@cam.ac.uk

https://www.github.com/petehague/STOA
mailto:prh44@cam.ac.uk

